
UNCORRECTED
PROOF

Chapter 3 1

Basic Concepts and Data Organisation 2

Goals of this chapter
This chapter introduces the basic concepts of the R software (calculator mode,
assignment operator, variables, functions, arguments) and the various data types
and structures which can be handled by R.

3

4

SECTION 3.1

Your First Session
5

Launch R by double-clicking its icon on the Windows Desktop (or from the Start 6

menu). At the end of the text displayed in the R console, you can see the prompt 7

symbol >, inviting you to type in your first instruction in the R language. 8

R version 2.14.1 (2011-12-22)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

>

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 3,
© Springer Science+Business Media New York 2013

37

UNCORRECTED
PROOF

38 3 Basic Concepts and Data Organisation

For example, type "R is my friend", then validate by hitting the ENTER key 9

(or RETURN). You will then get 10

> "R is my friend"
[1] "R is my friend"

As you can see, R is well behaved and kindly proceeds with your request. This will 11

usually be the case—maybe R is trying to compensate for its lack of conviviality. 12

We shall explain later on why R’s reply starts with [1]. 13

3.1.1 R Is a Calculator 14

Like many other similar languages, R can easily replace all the functionalities of 15

a (very sophisticated!) calculator. One of its major strengths is that it also allows 16

calculations on arrays. Here are a few very basic examples. 17

> 5*(-3.2) # Careful: the decimal mark must be a point (.)
[1] -16
> 5*(-3,2) # otherwise, the following error is generated:

Error : ’,’ unexpected in "5*(-3,"

> 5ˆ2 # Same as 5**2.
[1] 25
> sin(2*pi/3)
[1] 0.8660254
> sqrt(4) # Square root of 4.
[1] 2
> log(1) # Natural logarithm of 1.
[1] 0
> c(1,2,3,4,5) # Creates a collection of the first five

integers.
[1] 1 2 3 4 5
> c(1,2,3,4,5)*2 # Calculates the first five even numbers.
[1] 2 4 6 8 10

Tip

Any R code after the symbol “#” is considered by R as a comment. In fact,
R does not interpret it.

You can now exit the R software by typing the following instruction: q(). 18

19

You are asked whether you wish to save an image of the session. If you answer 20

yes, the commands you typed earlier will be accessible again next time you open R, 21

by using the “up” and “down” keyboard arrows. 22

UNCORRECTED
PROOF

3.1 Your First Session 39

3.1.2 Displaying Results and Variable Redirecting 23

As you have probably noticed, R responds to your requests by displaying the result 24

obtained after evaluation. This result is displayed, then lost. At first, this might 25

seem sensible, but for more advanced uses, it is useful to redirect the R output to 26

your request, by storing it in a variable: this operation is called assigning the result 27

to a variable. Thus, an assignment evaluates an expression but does not display the 28

result, which is instead stored in an object. To display the result, all you need to do 29

is type the name of that object, then hit ENTER. 30

31

To make an assignment, use the assignment arrow <-. To type the arrow <-, 32

use the lesser than symbol (<) followed by the minus symbol (-). 33

34

To create an object in R, the syntax is thus 35

Name.of.the.object.to.create <- instructions 36

37

For example, 38

> x <- 1 # Assignment.
> x # Display.
[1] 1

We say that the value of x is 1, or that we have assigned 1 to x or that we have 39

stored in x the value 1. Note that the assignment operation can also be used the other 40

way around ->, as in 41

> 2 -> x
> x
[1] 2

Warning

The symbol = can also be used, but its use is less general and is therefore
not advised. Indeed, mathematical equality is a symmetrical relation with a
specific meaning, very different to assignment. Furthermore, there are cases
where using the symbol = does not work at all.

Tip

Note that a pair of brackets allows you to assign a value to a variable and
display the evaluation result at the same time:

> (x <- 2+3)
[1] 5

If a command is not complete at the end of a line, R will display a different 42

prompt symbol, by default the plus sign (+), on the second line and on following 43

lines. R will continue to wait for instructions until the command is syntactically 44

complete. 45

UNCORRECTED
PROOF

40 3 Basic Concepts and Data Organisation

> 2*8*10+exp(1)
[1] 162.7183
> 2*8*
+ 10+exp(
+ 1)
[1] 162.7183

Warning

Here are the rules for choosing a variable name in R: a variable name can
only include alphanumerical characters as well as the dot (.); variable names
are case sensitive, which means that R distinguishes upper and lower case; a
variable name may not include white space or start with a digit, unless it is
enclosed in quotation marks "".

3.1.3 Work Strategy 46

� Take the habit of storing your files in a folder reserved to this effect (you could 47

call it Rwork). We also advise you to type all your R commands in a script win- 48

dow called script or R editor, accessible through the “File/New script” menu. 49

Open a new script window, click on the “Windows/Side by side” menu, then 50

copy the script below: 51

x <- 5*(-3.2)
5ˆ2
sin(2*pi/3)
sqrt(4)
c(1,2,3,4,5)
z <- c(1,2,3,4,5)*2

Mac

On a Mac, the menu is “File/New Document”, and it is not possible to lay
the windows side by side.

At the end of your session, you can save this script in the folder Rwork, for 52

example, as myscript.R, and reopen it during a later session from the menu 53

“File/Open a script” (or on a Mac “File/Open Document”). 54

55

� You can then use the key combinations CTRL+A (COMMAND+A on a Mac) to select 56

all the instructions, then CTRL+R (COMMAND+ENTER on a Mac) to paste and exe- 57

cute them in one step in the R console. You can also execute a single line of R 58

instructions from the script by hitting CTRL+R when the blinking cursor is on the 59

relevant line of the script window. 60

UNCORRECTED
PROOF

3.1 Your First Session 41

Fig. 3.1: The script window and the command console

Tip

Note in Fig. 3.1 the presence of the red STOP button that lets you interrupt
a calculation that would last too long.

You can also use the function source() from the R console to read and execute 61

the content of your file. This helps prevent overloading the console, as we will 62

see later. You may find it useful to proceed as follows: 63

(a) Clicking once in the R console window. 64

(b) Going to the menu “File/Change current directory” (“Misc/Change work 65

directory” on a Mac). 66

(c) Exploring your file system and selecting the folder Rwork. 67

(d) Typing in the console source("myscript.R"). Note that for the above 68

example, the use of this instruction will not produce any output. The 69

following Do it yourself will clarify this point. 70

71

UNCORRECTED
PROOF

42 3 Basic Concepts and Data Organisation

72

Do it yourself Ï
73

Begin to create a folder called Rwork in your home directory. Then, type in 74

and save in an R script the preceding instructions. The file containing the R 75

script will be called myscript.R and will be put in Rwork. Now close then 76

reopen R. Next, type the following instructions in the R console: 77

rm(list=ls()) # Delete all existing objects. 78

ls() # List existing objects. 79

source("myscript.R") 80

ls() 81

x 82

z 83

Note that the source() function has permitted to execute the preceding in- 84

structions. You may have noticed that the computations which have not been 85

redirected into variables have not been printed. So their result is lost. Change 86

your script and add the following instructions at the end of it: 87

print(2*3) 88

print(x) 89

Save it, then source it. What happened? 90

91
92

� Take the habit of using the online R help. The help is very complete and 93

in English. You can reach it with the function help(). For example, type 94

help(source) to get help about the function source(). 95

96

See also

All these notions will be examined in further detail in Chaps. 6 and 9.

Tip

Two good code editors are RStudio, available at http://www.rstudio.
com, and Tinn-R (Windows only), available at http://www.sciviews.org/
Tinn-R. They offer a better interaction between a script’s code and its execu-
tion. They also provide syntactic colouring of the code.

Linux

Under Linux, note that the editors JGR and Emacs/ESS are available.

UNCORRECTED
PROOF

3.1 Your First Session 43

See also

You can consult the list of R editors on the webpage http://www.
sciviews.org/_rgui/projects/Editors.html.

97

Do it yourself Ï
98

The body mass index (BMI) is used to determine a person’s corpulence. It is 99

calculated using the formula 100

BMI D Weight (kg)

Height2 (m)
:

Calculate your BMI. You simply need to type the following lines in your 101

script window: 102

You can type 2 instructions
on the same line thanks to the symbol ;
My.Weight <- 75 ; My.Height <- 1.90
My.BMI <- My.Weight/My.Heightˆ2
My.BMI

Execute this script by using the work strategy mentioned earlier. You can 103

then modify this script to calculate your own BMI. 104

105

We propose a function to visualize your corpulence type. Execute the fol- 106

lowing instructions: 107

source("http://www.biostatisticien.eu/springeR/BMI.R",
encoding="utf8")
display.BMI(My.BMI)

You will learn how to program this kind of result in later chapters. 108

109
110

3.1.4 Using Functions 111

We have already encountered a few functions: sin(), sqrt(), exp() and log(). 112

The base version of R includes many other functions, and thousands of others can 113

be added (by installing packages or by creating them from scratch). 114

115

Note that a function in R is defined by its name and by the list of its parameters. 116

Most functions output a value, which can be a number, a vector, or a matrix. 117

118

UNCORRECTED
PROOF

44 3 Basic Concepts and Data Organisation

Using a function (or calling or executing it) is done by typing its name followed, 119

in brackets, by the list of (formal) arguments to be used. Arguments are separated by 120

commas. Each argument can be followed by the sign = and the value to be given to 121

the argument. This value of the formal argument will be called effective argument, 122

call argument or sometimes entry argument. 123

We will therefore use the instruction 124

functionname(arg1=value1,arg2=value2,arg3=value3)

where arg1, arg2, ... are called the arguments of the function, whereas value1 125

is the value given to the argument arg1, etc. Note that you do not necessarily need 126

to indicate the names of the arguments, but only the values, as long as you follow 127

their order. 128

For any R function, some arguments must be specified and others are optional 129

(because a default value is already given in the code of the function). 130

131

Warning

Do not forget the brackets when you call a function. A common mistake for
beginners is forgetting the brackets:

> factorial
function (x)
gamma(x + 1)
<environment: namespace:base>
> factorial(6)
[1] 720

The output to the first instruction gives the code (i.e. the recipe) of the func-
tion, whereas the second instruction executes that code. This is also true for
functions which do not require an argument, as shown in the following exam-
ple:

> date()
[1] "Wed Jan 9 16:04:32 2013"
> date
function ()
.Internal(date())
<environment: namespace:base>

Obviously, this is not the place to comment the code of these functions.

To better understand how to use arguments, take the example of the function 132

log(x,base=exp(1)). It can take two arguments: x and base. 133

134

The argument xmust be specified: it is the number of which we wish to calculate 135

the logarithm. The argument base is optional, since it is followed with the symbol = 136

and the default value exp(1). 137

138

UNCORRECTED
PROOF

3.1 Your First Session 45

Tip

An argument which is not followed with the symbol = must be specified. A
parameter is optional if it is followed with =.

In the following code, R will calculate the natural logarithm of the number 1, 139

since the base argument is not specified: 140

> log(1)
[1] 0

Note

For some functions, no argument needs to be specified, for example,
matrix, which we shall encounter later on.

One last important note is that you can call a function by playing with the 141

arguments in several different ways. This is an important feature of R which 142

makes it easier to use, and you will find it useful to understand this principle. 143

To calculate the natural logarithm of 3, any of the following expressions can be 144

used: 145

146

log(3)

log(x=3)

log(x=3,base=exp(1))

log(x=3,exp(1))

log(3,base=exp(1))

log(3,exp(1))

log(base=exp(1),3)

log(base=exp(1),x=3)

147

148

149

Warning

Note that calling

log(exp(1),3)

will calculate the logarithm of exp(1) in base 3.

Finally, recall that we have been able to see the code for the function 150

factorial(): 151

> factorial
function (x)
gamma(x + 1)
<environment: namespace:base>

This function was defined by the R developers with the following instructions: 152

> factorial <- function(x) gamma(x+1)

It is very easy to code a new function in R, by using the function function(). 153

For example, here is how to code a function which takes two arguments n and p and 154

calculates the binomial coefficient
�

n
p

� D nŠ
pŠ.n�p/Š

: 155

UNCORRECTED
PROOF

46 3 Basic Concepts and Data Organisation

> binomial <- function(n,p) factorial(n)/(factorial(p)*
+ factorial(n-p))

You can then use this new function as any other R function: 156

> binomial(4,3)
[1] 4

We shall study in much further detail how to create more elaborate functions in 157

Sect. 5.8 and in Chap. 8. 158

Note

In fact, there already exists an R function to compute the Newton binomial
coefficient. This is the function choose() that works more efficiently, espe-
cially for big numbers.

SECTION 3.2

Data in R
159

R, like most computer languages, can handle classical data types. R is actually able 160

to automatically recognize data types according to the format of the input. One of 161

the main strengths of R is its ability to organize data in a structured way. This will 162

turn out to be very useful for many statistical procedures we will study later on. 163

3.2.1 Data Nature (or Type, or Mode) 164

Data “types” can be handled using the functions mode() and typeof(), which only 165

differ in very subtle ways which we shall ignore. 166

Note

The function class() is more general: it is used to handle both data type
and structuring. We shall study it later on. For ease of understanding, we shall
use the command typeof().

The various types (or modes) of data are now presented. 167

3.2.1.1 Numeric Type (numeric) 168

There are two numeric types: integers (integer) and real numbers (double). 169

If you enter 170

UNCORRECTED
PROOF

3.2 Data in R 47

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Complex numbers

Re(z)

Im
(z

)

z

M
od

(z
)

Arg(z)

Fig. 3.2: Characteristics of a complex number

> a <- 1
> b <- 3.4
> c <- as.integer(a)
> typeof(c)
[1] "integer"

the variables a and b are of the type "double", and the variable c has the same 171

value as a, except that it has been forced to be of the type "integer". This is 172

useful because a vector of "integer"s takes up less memory space than a vector of 173

"double"s of the same length. Instructions starting with as. are very common in 174

R to convert data into a different type. We will see in the Sect. 3.2.2.1 how to check 175

that an object’s type is numeric. 176

3.2.1.2 � Complex Type (complex) 177

A complex number is created, thanks to the letter i. The functions Re() for real 178

part, Im() for imaginary part, Mod() for modulus and Arg() for argument can be 179

used (Fig. 3.2). 180

Here are a few examples: 181

> 1i
[1] 0+1i
> z <- 1+2i
> typeof(z)
[1] "complex"
> is.complex(z) # To know whether an object is of the complex

type.
[1] TRUE
> Re(z)
[1] 1

UNCORRECTED
PROOF

48 3 Basic Concepts and Data Organisation

> Im(z)
[1] 2
> Mod(z)
[1] 2.236068
> Arg(z)
[1] 1.107149

3.2.1.3 Boolean or Logical Type (logical) 182

The type logical() is the result of a logical operation. It can take the values TRUE 183

or FALSE. Here are a few instructions to create logical values: 184

> b>a
[1] TRUE
> a==b
[1] FALSE
> is.numeric(a)
[1] TRUE
> is.integer(a)
[1] FALSE
> x <- TRUE
> is.logical(x)
[1] TRUE

Warning

TRUE and FALSE can also be entered in a more condensed form by typing T
and F, respectively. But this should not be encouraged.

When needed, this data type is naturally converted to numeric without having 185

to specify the conversion: TRUE is worth 1 and FALSE is worth 0. The following 186

example illustrates this point: 187

> TRUE + T + FALSE*F + T*FALSE + F
[1] 2

3.2.1.4 Missing Data (NA) 188

A missing or undefined value is indicated by the instruction NA (for non-available). 189

Several functions exist to handle this data type. In fact, R considers this data type as 190

a constant logical value. Strictly speaking, it is therefore not a data type. Here are a 191

few examples which use the instruction NA: 192

> x <- c(3,NA,6)
> is.na(x)
[1] FALSE TRUE FALSE
> mean(x) # Trying to calculate the mean of x.

UNCORRECTED
PROOF

3.2 Data in R 49

[1] NA
> mean(x,na.rm=TRUE) # The na.rm argument means that NA’s

should be ignored (NA.remove).
[1] 4.5

This is a very important notion when it comes to reading statistical data files. We 193

shall examine it in further detail in Chap. 5. 194

195

Warning

Do not mistake NA for the reserved word NaN, which means not a number:

> 0/0
[1] NaN

Note also that the following instruction does not output NaN but infinity,
represented in R with the reserved word Inf.

> 3/0
[1] Inf

3.2.1.5 Character String Type (character) 196

Any information between quotation marks (single ' or double ") corresponds to a 197

character string: 198

199
> a <- "R is my friend"
> mode(a)
[1] "character"
> is.character(a)
[1] TRUE

Conversions into a character string from another type are possible. Converting a 200

character string into another type is possible as long as R can correctly interpret the 201

content inside the quotations marks. Note that some conversions are done automat- 202

ically. Here are a few examples: 203

204

> as.character(2.3) # Conversion into a character string.
[1] "2.3"
> b <- "2.3"
> as.numeric(b) # Conversion from a character string.
[1] 2.3
> as.integer("3.4") # Conversion from a character string.
[1] 3
> c(2,"3") # Automatic conversion.
[1] "2" "3"
> as.integer("3.four") # Impossible conversion.
[1] NA

UNCORRECTED
PROOF

50 3 Basic Concepts and Data Organisation

Note

The differences between single and double quotation marks are given in
Chap. 5.

3.2.1.6 � Raw Data (raw) 205

In R, it is possible to work directly with bytes (displayed in hexadecimal format). 206

This can sometimes be useful when reading certain files in binary format. We shall 207

see examples in Chap. 7. 208

> x <- as.raw(15)
> x
[1] 0f
> mode(x)
[1] "raw"

Summary 209

Table 3.1: The various data types in R

Data type Type in R Display

Real number (integer or not) numeric 3.27

Complex number complex 3+2i

Logical (true/false) logical() TRUE or FALSE
Missing logical() NA

Text (string) character "text"

Binary raw 1c

Tip

The function storage.mode() get or set the type or storage mode of an
object.

3.2.2 Data Structures 210

In R, you can organize (structure) the various data types defined above (Table 3.1). 211

The structures we are about to present can be accessed or created with the function 212

class() (Table 3.2). 213

UNCORRECTED
PROOF

3.2 Data in R 51

3.2.2.1 Vectors (vector) 214

This is the simplest data structure. It represents a sequence of data points of the 215

same type. A vector can be created with the function c() (for collection or con- 216

catenation). Other functions such as seq() or a colon : can also be used to create a 217

vector. Note that when creating a vector, it is possible to mix data of different types. 218

R will then make an implicit conversion into the more general data type, as shown 219

in the following example: 220

> c(3,1,7)
[1] 3 1 7
> c(3,TRUE,7)
[1] 3 1 7
> c(3,T,"7")
[1] "3" "TRUE" "7"
> seq(from=0,to=1,by=0.1)
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> seq(from=0,to=20,length=5)
[1] 0 5 10 15 20
> vec <- 2:36
> vec
[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[20] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Warning

The indications [1] and [20] give the rank in the vector vec of the element
they precede.

Note that it is possible to “name” the elements of a vector using the function 221

names(). 222

> vec <- c(1, 3, 6, 2, 7, 4, 8, 1, 0)
> names(vec) <- letters[1:9] # 9 first letters of the alphabet.
> vec
a b c d e f g h i
1 3 6 2 7 4 8 1 0

> is.vector(vec)
[1] TRUE
> x <- 1:3
> x
[1] 1 2 3
> y <- c(1,2,3)
> y
[1] 1 2 3
> class(x)
[1] "integer"
> class(y)
[1] "numeric"

UNCORRECTED
PROOF

52 3 Basic Concepts and Data Organisation

One would actually expect to see appear "vector of doubles" or "vector 223

of integers" instead of "numeric" or "integer", but no software is perfect! 224

Advanced users

Note that the instructions c() and : give the same output, but that x and
y are stored internally in different ways. The type integer uses less memory
than the type numeric.

3.2.2.2 Matrices (matrix) and Arrays (array) 225

These two notions are generalizations of the vector notion: they represent sequences 226

with two indices for matrices and with multiple indices for arrays. As with vectors, 227

elements must be of the same type, otherwise implicit conversions will occur. 228

229

The following instruction 230

> X <- matrix(1:12,nrow=4,ncol=3,byrow=TRUE)
> X

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12

creates (and stores in the variable X) a matrix with four rows and three columns, 231

filled by row (byrow =TRUE) with the elements of the vector 1:12 (e.g., the twelve 232

first integers). 233

Similarly, a matrix can be filled by column (byrow=FALSE). 234

> Y <- matrix(1:12,nrow=4,ncol=3,byrow=FALSE)
> Y

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> class(Y)
[1] "matrix"

The function array() is used to create multidimensional matrices with more 235

than two dimensions, as shown in the following figure (for a three-dimensional 236

array) (Fig. 3.3): 237

238

> X <- array(1:12,dim=c(2,2,3))
> X
, , 1

[,1] [,2]
[1,] 1 3

UNCORRECTED
PROOF

3.2 Data in R 53

Fig. 3.3: Illustration of an array

[2,] 2 4
, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8
, , 3

[,1] [,2]
[1,] 9 11
[2,] 10 12
> class(X)
[1] "array"

Warning

Arrays with more than three dimensions can be created, thanks to the argu-
ment dim, which can be of length greater than 3.

3.2.2.3 Lists (list) 239

The most flexible and richest structure in R is the list. Unlike the previous structures, 240

lists can group together in one structure data of different types without altering 241

them. Generally speaking, each element of a list can thus be a vector, a matrix, an 242

array or even a list. Here is a first example: 243

> A <- list(TRUE,-1:3,matrix(1:4,nrow=2),c(1+2i,3),
+ "A character string")
> A

UNCORRECTED
PROOF

54 3 Basic Concepts and Data Organisation

[[1]]
[1] TRUE
[[2]]
[1] -1 0 1 2 3
[[3]]

[,1] [,2]
[1,] 1 3
[2,] 2 4
[[4]]
[1] 1+2i 3+0i
[[5]]
[1] "A character string"
> class(A)
[1] "list"

In such a structure, with heterogeneous data types, element ordering is often 244

completely arbitrary. Elements can therefore be explicitly named, which makes the 245

output more user-friendly. Here is an example: 246

> B <- list(my.matrix=matrix(1:4,nrow=2),
+ my.complex.numbers=c(1+2i,3))
> B
$my.matrix

[,1] [,2]
[1,] 1 3
[2,] 2 4
$my.complex.numbers
[1] 1+2i 3+0i
> list1 <- list(my.complex.number=1+1i,my.logical.value=FALSE)
> list2 <- list(my.string="I am learning R",my.vector=1:2)
> C <- list("My first list"=list1,My.second.list=list2)
> C
$‘My first list‘
$‘My first list‘$my.complex.number
[1] 1+1i
$‘My first list‘$my.logical.value
[1] FALSE
$My.second.list
$My.second.list$my.string
[1] "I am learning R"
$My.second.list$my.vector
[1] 1 2

See also

Naming elements will make it easier to extract elements from a list (see
Chap. 5, p. 106).

UNCORRECTED
PROOF

3.2 Data in R 55

3.2.2.4 The Individual�Variable Table (data.frame) 247

The individual�variable table is the quintessential structure in statistics. In R, this 248

notion is expressed by a data.frame. Conceptually speaking, it is a matrix with each 249

line corresponding to an individual and each column corresponding to a variable 250

measured on the individuals. Each column represents a single variable, which 251

must be of the same type across all individuals. The columns of the data matrix 252

can have names. Here is an example of a data.frame creation: 253

> BMI <- data.frame(Gender=c("M","F","M","F","M","F"),
+ Height=c(1.83,1.76,1.82,1.60,1.90,1.66),
+ Weight=c(67,58,66,48,75,55),
+ row.names=c("Jack","Julia","Henry","Emma","William","Elsa"))
> BMI

Gender Height Weight
Jack M 1.83 67
Julia F 1.76 58
Henry M 1.82 66
Emma F 1.60 48
William M 1.90 75
Elsa F 1.66 55
> is.data.frame(BMI)
[1] TRUE
> class(BMI)
[1] "data.frame"
> str(BMI)
’data.frame’: 6 obs. of 3 variables:
$ Gender: Factor w/ 2 levels "F","M": 2 1 2 1 2 1
$ Height: num 1.83 1.76 1.82 1.6 1.9 1.66
$ Weight: num 67 58 66 48 75 55

Note

The str() function enables one to display the structure of each column of
a data.frame.

Advanced users

A data.frame can be seen as a list of vectors of identical length. This is
actually how R stores a data.frame internally.

> is.list(BMI)
[1] TRUE

UNCORRECTED
PROOF

56 3 Basic Concepts and Data Organisation

3.2.2.5 Factors (factor) and Ordinal Variables (ordered) 254

In R, character strings can be organized in a more astute way, thanks to the function 255

factor(): 256

> x <- factor(c("blue","green","blue","red",
+ "blue","green","green"))
> x
[1] blue green blue red blue green green
Levels: blue green red
> levels(x)
[1] "blue" "green" "red"
> class(x)
[1] "factor"

Tip

The function cut() enables one to recode a continuous variable into a
factor.

> Poids <- c(55,63,83,57,75,90,73,67,58,84,87,79,48,52)
> cut(Poids,3)
[1] (48,62] (62,76] (76,90] (48,62] (62,76] (76,90] (62,76]
[8] (62,76] (48,62] (76,90] (76,90] (76,90] (48,62] (48,62]
Levels: (48,62] (62,76] (76,90]

Factors can of course be used in a data.frame. 257

R indicates the different levels of the factor. The function factor() should thus be 258

used to store qualitative variables. For ordinal variables, the function ordered() is 259

better suited: 260

> z <- ordered(c("Small","Tall","Average","Tall","Average",
+ "Small","Small"),levels=c("Small","Average","Tall"))
> class(z)
[1] "ordered" "factor"

The levels argument of the function ordered is used to specify the order of 261

the variable’s modalities. 262

263

See also

Examples of uses of these two functions are given in Chap. 11, pp. 341 and
342.

UNCORRECTED
PROOF

3.2 Data in R 57

Tip

The function gl() generates factors by specifying the pattern of their levels:

> gl(n = 2,k = 8,labels = c("Control", "Treat"))
[1] Control Control Control Control Control Control Control
[8] Control Treat Treat Treat Treat Treat Treat
[15] Treat Treat
Levels: Control Treat

In the above instruction, n and k are two integers, the first one giving the
number of levels and the second one the number of replications.

Advanced users

A vector of character strings can be organized in a more efficient way by
taking into account repeated elements. This approach allows better manage-
ment of the memory: each element of the factor or of the ordinal variable is in
fact coded as an integer.

3.2.2.6 Dates 264

R can be used to structure the data representing dates, using the as.Date() function 265

for example. 266

> dates <- c("92/27/02", "92/02/27", "92/01/14",
+ "92/02/28", "92/02/01")
> dates <- as.Date(dates, "%y/%m/%d")
> dates
[1] NA "1992-02-27" "1992-01-14" "1992-02-28"
[5] "1992-02-01"
> class(dates)
[1] "Date"

We will return in detail on the functions for manipulating dates in Chap. 5. 267

3.2.2.7 Time Series 268

When data values are indexed by time, it may be useful, using the ts() function, to 269

organize them into an R structure that reflects the temporal aspect of these data. 270

> ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of
1959.

Qtr1 Qtr2 Qtr3 Qtr4
1959 1 2 3
1960 4 5 6 7
1961 8 9 10

UNCORRECTED
PROOF

58 3 Basic Concepts and Data Organisation

See also

The reader may consult with profit the book [40] which outlines the basic
techniques for modelling time series, present the R functions to use for these
models and give applications of these functions on several real data sets.

Summary 271

Table 3.2: The various data structures in R

Data structure Instruction in R Description

Vector c() Sequence of elements of the
same nature

Matrix matrix() Two-dimensional table of
elements of the same
nature

Multidimensional table array() More general than a matrix;
table with several
dimensions

List list() Sequence of R structures of
any (and possibly
different) nature

Individual�variable table data.frame() Two-dimensional table
where a row represents
an individual and a
column represents a
variable (numerical or
factor). The columns can
be of different natures,
but must have the same
length

Factor factor(), ordered() Vector of character strings
associated with a
modality table

Dates as.Date() Vector of dates
Time series ts() Time series, containing the

values of a variable
observed at several time
points

UNCORRECTED
PROOF

Exercises 59

Memorandum

<-, ->: variable assignment arrows
mode(), typeof(): gives the nature of an object
is.numeric(): determine whether an object is numerical
TRUE, FALSE, is.logical(): True, False, determine whether an object is a Boolean
is.character(): determine whether an object is a character string
NA, is.na(): missing value, determine whether a value is missing
class(): determine the structure of an object
c(): create a sequence of elements of the same nature
matrix(), array(): create a matrix, a multidimensional table
list(): create a list (collection of different structures)
data.frame(): create an individual�variable table
factor(): create a factor

272

✎
Exercises

3.1- What is the output of this instruction: 1:3ˆ2 ? 273

3.2- What is the output of this instruction: (1:5)*2 ? 274

3.3- What is the output of these instructions: var<-3? Var*2? 275

3.4- What is the output of these instructions: x<-2? 2x<-2*x? 276

3.5- What is the output of these instructions: root.of.four <- sqrt(4)? 277

root.of.four? 278

3.6- What is the output of these instructions: x<-1? x< -1? 279

3.7- What is the output of this instruction: An even number <- 16? 280

3.8- What is the output of this instruction: "An even number" <- 16? 281

3.9- What is the output of this instruction: "2x" <- 14? 282

3.10- What is the output of this instruction: An even number? 283

3.11- Two symbols have been removed from this R output. What are they? 284

> 2
+
[1] 6

3.12- What is the output of this instruction: TRUE + T +FALSE*F + T*FALSE +F? 285

3.13- Name the five data types in R. 286

3.14- Give the R instruction which gives the following output: 287

> X
[,1] [,2] [,3]

[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

3.15- Name the data structures (classes) available in R. 288

UNCORRECTED
PROOF

60 3 Basic Concepts and Data Organisation

Ï
Worksheet

Study of Body Mass Index 289

290

We wish to analyze the characteristics of a sample of children. These children went 291

through a medical examination in their first year of kindergarten in 1996–1997 in 292

schools in Bordeaux (South West France). The sample below contains information 293

on ten children between the ages of 3 and 4. 294

295

The following information is available for each child: 296

� gender: G for girls and B for boys; 297

� whether their school is in a ZEP (zone d’éducation prioritaire: area targeted 298

for special help in education, recognized as socially deprived): Y for yes and 299

N for no; 300

� age in years and months (two variables: one for years and one for months); 301

� weight in kg, rounded to the nearest 100 g; 302

� Height in cm, rounded to the nearest 0.5 cm. 303

304

Name Edward Cynthia Eugene Elizabeth Patrick John Albert Lawrence Joseph Leo

Gender G G B G B B B B B B
ZEP Y Y Y Y N Y N Y Y Y
Weight 16 14 13.5 15.4 16.5 16 17 14.8 17 16.7
Years 3 3 3 4 3 4 3 3 4 3
Months 5 10 5 0 8 0 11 9 1 3
Height 100.0 97.0 95.5 101.0 100.0 98.5 103.0 98.0 101.5 100.0

In statistics, it is of the utmost importance to know the type of the variables under 305

study: qualitative, ordinal or quantitative. These types can be specified in R, thanks 306

to the structure functions we introduced earlier in this chapter. 307

308

Try the following manipulations under R. Remember to use the work strategy we 309

presented at the beginning of the chapter. 310

3.1- Choose the best R function to save the data from each variable in vectors 311

which you will call Individuals, Weight, Height and Gender. 312

3.2- Where possible, calculate the mean of the variables. 313

3.3- Calculate the BMI of the individuals. Group the results in a vector called BMI 314

(be careful of the units). 315

UNCORRECTED
PROOF

Worksheet 61

3.4- Group these variables in the R structure which seems most appropriate. 316

3.5- Use R’s online help to get information on the plot() function. 317

3.6- Make a scatter plot of Weight as a function of Height. Remember to add a 318

title to your graph and to label your axes. 319

320

