
UNCORRECTED
PROOF

Chapter 8 1

Programming in R 2

Prerequisites and goals of this chapter
� Read all previous chapters first. A neophyte user can skim through this chap-

ter on first reading. Indeed, it is well known that programming in a language
requires a more advanced level than using a language.

� The aim of this chapter is to give the user the opportunity to develop new func-
tions; in R, this corresponds to extending the language. The user can thus com-
plete his comprehension of how R works.

3

4

SECTION 8.1

Preamble
5

The strength of the R system is that it includes a real programming language. We 6

shall see that it offers very original programming concepts. The concept of objects 7

is very present in R. Object-oriented programming as used in R is transparent for 8

the user, in the sense that you do not need to understand the theory in order to use 9

it. The same cannot be said for the developer who wishes to respect the spirit of R. 10

11

Practical Problem 12

13

As an example, this chapter will tackle the resolution of the following practical 14

problem. Suppose that some users, beginners in R, wish to discover programming in 15

R by developing a few functions relative to the well-known least squares methods,1 16

in the context of simple linear regression. He soon realizes that two specific tasks 17

1 See for example http://en.wikipedia.org/wiki/Ordinary_least_squares.

P. Lafaye de Micheaux et al., The R Software: Fundamentals of Programming
and Statistical Analysis, Statistics and Computing 40, DOI 10.1007/978-1-4614-9020-3 8,
© Springer Science+Business Media New York 2013

193

UNCORRECTED
PROOF

194 8 Programming in R

are of interest to him: first, output a summary with estimations and the coefficient 18

of linear correlation; second, draw a scatter plot with the regression line. With his 19

experience from previous chapters, this user finds it easy to produce these results 20

from the command line. However, he/she would like to avoid having to type in 21

several lines of commands every time he/she wishes to see the result of these two 22

tasks, and so would like to develop two functions, easier to apply in a daily use of 23

R. To this end, he/she will have the help of a more advanced user who can advise 24

him/her every time he/she encounters a difficulty. 25

26

This practical problem should help the reader understand the use of the notions 27

presented in this chapter. 28

SECTION 8.2

Developing Functions
29

First of all, let us introduce some basic theoretical elements to explain how to create 30

a function in R. 31

8.2.1 Quick Start: Declaring, Creating and Calling Functions 32

Declaring a function is done with the following general form: 33

function(<list of arguments>) <body of the function> 34

where 35

� <list of arguments> is a list of named (formal) arguments. 36

� <body of the function> represents, as the name suggests, the contents of 37

the code to execute when the function is called. 38

Here is an example of function declaration: 39

> function(name) cat("Hello",name,"!")
function(name) cat("Hello",name,"!")

For R, a function is a specific object. Creating a function thus corresponds to 40

affecting the object “R function” to a variable, the name of which corresponds to 41

the function itself. For example, to create the function hello(), you can proceed as 42

follows: 43

> hello <- function(name) cat("Hello",name,"!")
> hello
function(name) cat("Hello",name,"!")

For this function to be executed, the user needs to call the function, followed by 44

the effective arguments listed in brackets. Recall that an effective argument is the 45

UNCORRECTED
PROOF

8.2 Developing Functions 195

value affected to a formal argument. We will use the terms calling argument and 46

input argument as synonyms of effective argument. 47

> hello("Peter")
Hello Peter !

8.2.2 Basic Concepts on Functions 48

8.2.2.1 Body of a Function 49

The body of a function can be a simple R instruction, or a sequence of R instructions. 50

In the latter case, the instructions must be enclosed between the characters f and g 51

to delimit the beginning and end of the body of the function. Several R instructions 52

can be written on the same line as long as they are separated by the character ;. 53

When the body of the function includes several R instructions written on the same 54

line, do not forget to enclose them between characters f and g. Recall that on a line, 55

any code written after the character # is not interpreted by R and is taken to be a 56

comment. 57

> hello <- function(name) f
+ # Convert the name to upper case.
+ name <- toupper(name)
+ cat("Hello",name,"!")
+ g
> hello("Peter")
Hello PETER !

8.2.2.2 List of Formal and Effective Arguments 58

In this section, we describe how to declare the list of formal arguments when 59

defining a function and how to input the list of effective arguments when calling a 60

function. 61

62

Declaring a Function 63

64

When declaring a function, all arguments are identified by a unique name. 65

Each argument can be associated with a default value. To specify a default value, 66

use the character = followed by the default value, as when declaring a list object 67

(list()). When the function is called with no effective argument for that argument, 68

the default value will be used. We have used this functionality many times in previ- 69

ous chapters, but we now know how to include it when developing new functions. 70

Here is an example: 71

> hello <- function(name="Peter") cat("Hello",name,"!")
> hello()
Hello Peter !

UNCORRECTED
PROOF

196 8 Programming in R

It seems useful to explain the difference between calling the name of the function 72

hello and calling the function followed by brackets: hello(). The first form will 73

display the contents of the function, as with any other R object, whereas the second 74

form will call the function (in this case, with no argument specified). To execute a 75

function, you always have to add brackets and list the effective arguments if neces- 76

sary. 77

78

Naming Effective Arguments 79

80

In R, an effective argument can be entered by adding the name of the formal 81

argument. Of course, this is of little interest when the function only depends on 82

a single formal argument. Let us add to our function hello() the possibility of 83

choosing a language, and see a few calls of this function. 84

> hello <- function(name="Peter",language="eng") f
+ cat(switch(language,fr="Bonjour",sp="Hola",eng="Hello"),

name,"!")
+ g
> hello()
Hello Peter !
> hello(name="Ben")
Hello Ben !
> hello(language="fr")
Bonjour Peter !

This functionality, combined with the ability to specify default values,2 allows 85

the developer to define a function with an important list of formal arguments corre- 86

sponding to call options. Users can then call this function without needing to input 87

all effective arguments. For example, they can affect a value to the last formal argu- 88

ment without having to type in all the other effective arguments. This way, a single 89

function can be used for what would have otherwise required several functions. 90

This is a true specificity3 of R, which allows an innovative programming mode. For 91

example, read the help file on the functionalities of the function seq() with the 92

various arguments by, length.out and along.with. 93

94

Partial Naming of Effective Arguments 95

96

In the same context, a second functionality of R is that it allows calling a function 97

without typing in the complete name of a formal argument. Consider the following 98

calls of the function hello(): 99

> hello(lang="eng")
Hello Peter !
> hello(l="eng")
Hello Peter !
> hello(l="e")
Peter !

2 The function missing() is also very useful for this kind of programming.
3 It should be noted that many programming languages do not have this functionality.

UNCORRECTED
PROOF

8.2 Developing Functions 197

The rule for determining the formal argument corresponding to a partial name is: 100

in the ordered list of formal arguments of the function, the selected formal argument 101

is the first formal argument for which there is a match between the first letters of 102

the argument name and the partial name given by the user. 103

104

List of Supplementary Arguments “...” 105

106

You can give a list of supplementary arguments with the syntax When call- 107

ing the function, all “named” arguments which are not in the list of formal arguments 108

are grouped in the structure In the body of the function, the user can then use 109

the syntax ... as if copy-pasting the list of supplementary named arguments. This 110

begs for an example: 111

> test.3points <- function(a="foo",...) print(list(a=a,...))
> test.3points("bar",b="foo")
$a
[1] "bar"
$b
[1] "foo"

Generally speaking, a rule of thumb for using the list of supplementary arguments 112

... in the body of a function is that it should be used as an argument of one or 113

several internal function calls. 114

Advanced users

When ... is included in a list of arguments and is not in last position, “par-
tial naming of arguments” will not work for all arguments after Indeed, a
partial formal argument name is then considered as a formal argument in the
supplementary list.

> test.3points <- function(aa="foo",...,bb="bar") f
+ print(list(aa=aa,...,bb=bb))g
> test.3points(a="bar",b="foo")
$aa
[1] "bar"
$b
[1] "foo"
$bb
[1] "bar"

Note that the value of the formal argument aa has been modified, but that
bb did not change its value. The formal argument b was created. To change the
value of the second formal argument bb, you need to use the complete name.

> test.3points(a="bar",bb="foo")
$aa
[1] "bar"
$bb
[1] "foo"

UNCORRECTED
PROOF

198 8 Programming in R

A keen user of partial names might be surprised by the following output
when using the function paste(..., sep = " ", collapse = NULL) if
he/she had taken the liberty of using the partial name (col) of the formal argu-
ment collapse:

> paste(c("foo","bar"),col=", ")
[1] "foo , " "bar , "

Since partial naming is ineffectual, col is considered as a second vector to
paste, and the default options of the function paste() are used (i.e. sep=" "
and collapse=NULL). To get the desired output, you need to use the complete
name of the formal argument collapse.

> paste(c("foo","bar"),collapse=", ")
[1] "foo, bar"

Tip

Generally speaking, when you call a function, you need to specify the value
of all formal arguments for which no default value is defined. If you do not,
an error occurs. There are however two exceptions. The first corresponds to the
case where the argument is not used in the body of the function; this is of course
useless and is probably due to a programming mistake. The second exception
is when the developer allowed for this case in the body of the program, with
the function missing().

> hello <- function(name) f
+ if(missing("name")) name <- "Peter"
+ cat("Hello",name,"!")
+ g
> hello()
Hello Peter !

8.2.2.3 Object Returned by a Function 115

The function hello() above does not return any object. It simply produces a 116

display on the screen. 117

> res <- hello()
Hello Peter !
> res
NULL

In previous chapters, we have often used R functions and saved the result as a 118

variable (e.g., x <- c(1,5,3), where the result of the base function c() is affected 119

to the variable x). Since we are now interested in developing functions, let us exam- 120

ine how to create a function which returns an object (a result that is not ephemeral). 121

UNCORRECTED
PROOF

8.2 Developing Functions 199

A general rule to return an object is to use the function return(). This instruc- 122

tion halts the execution of the code of the body of the function and returns the object 123

between brackets. Here is an example: 124

> hello <- function(name="Peter") f
+ return(paste("Hello",name,"!",collapse=" "))g
> hello()
[1] "Hello Peter !"
> message <- hello()
> message
[1] "Hello Peter !"

The first call of the function returns the string of characters object without 125

affecting it to a variable. The result is thus displayed on the screen, as if the user 126

had entered in the command line the object returned by the function. The second 127

call does not produce any display: the result of the function is redirected to the 128

variable message, as the last instruction above shows. 129

Note

It is possible to return an object without using the function return(). The
rule is then that the returned object is the last object manipulated in the last
instruction of the body of the function (i.e. just before exiting the function). In
the previous example, we could therefore have omitted the function return()

> hello <- function(name="Peter") f
+ paste("Hello",name,"!",collapse=" ")g
> hello()
[1] "Hello Peter !"

However, we discourage this practice because it does not always work, as
shown below where we would expect that the function returns 10:

> function.without.return <- function() f
+ for (i in 1:10) x <- ig
> function.without.return()

Can you tell whether the following function returns an object? If yes, what is the 130

content of this object? 131

> hello <- function(name="Peter") f
+ msg <- paste("Hello",name,"!",collapse=" ")g

What do you think when you see the output below? 132

> hello()

There is no display, so it seems that no object is returned. But are you certain 133

when you see the following example? 134

> message <- hello()
> message
[1] "Hello Peter !"

UNCORRECTED
PROOF

200 8 Programming in R

The last manipulated object is indeed the variable msg. Affecting the output to 135

the variable message does store the contents of the variable msg from the body of 136

the function. R can sometimes be unsettling, but you will agree that this kind of 137

usage is not rational and a developer would probably never find it useful. 138

Tip

If you wish to get the same behaviour as in the last example, i.e. that the
function does not display anything when called but does return an object, it is
more direct to use the function invisible()—the name of this function is
clear enough.

> hello <- function(name="Peter")
+ invisible(paste("Hello",name,"!",collapse=" "))
> hello()
> message <- hello()
> message
[1] "Hello Peter !"

8.2.2.4 Variable Scope in the Body of a Function 139

The notion of variable scope is very important for a language which allows to 140

develop functions. The main point is that variables defined inside the body of a 141

function have a local scope during function execution. This means that a variable 142

inside the body of a function is physically different from another variable with the 143

same name, but defined in the workspace of your R session. Generally speaking, lo- 144

cal scope means that a variable only exists inside the body of the function. After the 145

execution of the function, the variable is thus automatically deleted from the mem- 146

ory of the computer. We are now going to modify our function hello() by inserting 147

controls of the contents of variables. 148

> message <- "hello Pierre !"
> message # Workspace initialization.
[1] "hello Pierre !"
> hello <- function(name="Peter",message="hello") f
+ print(message)
+ message <- paste(message,name,"!",collapse=" ")
+ print(message)
+ invisible(message)
+ g
> hello()
[1] "hello"
[1] "hello Peter !"
> message # Workspace has not been modified!
[1] "hello Pierre !"
> message <- hello()
[1] "hello"
[1] "hello Peter !"

UNCORRECTED
PROOF

8.2 Developing Functions 201

> message # Workspace has been modified!
[1] "hello Peter !"
> message <- hello(message="Welcome")
[1] "Welcome"
[1] "Welcome Peter !"
> message # Workspace has been modified again!
[1] "Welcome Peter !"

A quick comment on the arguments of the function: contrary to what you might 149

think, the variables name and message are not directly evaluated (initialized to the 150

calling value or to the default value) before the execution of the body of the func- 151

tion. They are only initialized when they are first used in the body of the function. 152

Recall that the function missing() is used to test whether a formal argument has 153

been defined when calling the function. The only way for this functionality to be 154

operational is by not evaluating the list of formal arguments at the beginning of the 155

body of the function. Similarly, at the beginning of the body of the function, it is 156

possible to get the effective call (with the completed list of arguments) by using the 157

function match.call(). 158

> test.call <- function(aa="bar",... ,bb="foo") f
+ print(match.call())g
> test.call(a="foo",b="bar")

Advanced users

The last function creation may not seem very useful, but once you are
an advanced R developer, you might find a use to the result of the function
match.call(). We shall not give details, but only a taste of what can be done
in R. We shall modify the last function so that it returns the arguments split into
two lists: one (called function) of effective arguments associated with formal
arguments and one (called misc) of supplementary effective arguments. Note
how partial naming of arguments is managed.

> test.call <- function(aa="bar",...,bb="foo") f
+ args <- as.list(match.call())[-1]
+ inside <- names(args) %in% names(list(...))
+ list(funct=args[!inside],misc=args[inside])
+ g
> test.call(a="foo",b="bar")
$funct
$funct$aa
[1] "foo"
$misc
$misc$b
[1] "bar"

A few lines of code are enough to get the result: introspection is easy in R
and has many other features in the same context. We are not trying to get you
to delve straight away into this kind of development, but wish to point out the
possibilities of the language.

UNCORRECTED
PROOF

202 8 Programming in R

8.2.3 Application to the Practical Problem 159

After these theoretical explanations, our beginner user tries the following function 160

codes for simple linear regression. 161

162
1 mysummary . r eg 1 <� f u n c t i o n (y , x) f 163

2 a E s t <� cov (x , y) / v a r (x) 164

3 b E s t <� mean (y)� a E s t�mean (x) 165

4 r e t u r n (l i s t (a E s t=aEst , b Es t=bEst , c o r=c o r (x , y))) 166

5 g 167

6 168

7 m y d i sp lay . r e g 1 <� f u n c t i o n (y , x) f 169

8 a E s t <� cov (x , y) / v a r (x) 170

9 b E s t <� mean (y)� a E s t�mean (x) 171

10 p l o t (x , y) 172

11 a b l i n e (a=bEst , b=a E s t) 173

12 g 174
175

Note

Note that in old versions of R, you could write
return(aEst=aEst, bEst=bEst,cor=cor(x,y))

but that this usage will be deprecated in future versions.

After loading these functions with a copy–paste or with the command source(), 176

the user tests an uninteresting example. 177

> y <- rnorm(10);x <- 1:10
> mysummary.reg1(y,x)
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
$cor
[1] -0.4198245

The instruction mydisplay.reg1(y,x) produces Fig. 8.1 on page 211. 178

We shall see later on how these functions can be enriched. 179

8.2.4 Operators 180

Calling a function under the form <function>(<list of call arguments>) is 181

not always easy. An example is the function seq(). Of these two equivalent forms, 182

which one do you prefer? 183

> seq(1,3)
[1] 1 2 3

UNCORRECTED
PROOF

8.2 Developing Functions 203

> 1:3
[1] 1 2 3

You probably prefer the second form, since it is more synthetic (no brackets) and 184

is thus easier to manipulate, for example, when using indices (of vectors, matrices, 185

etc.). This form corresponds to an operator. R uses operators internally. 186

187

There are two forms of operators: 188

� Unary operator (one argument) : <operator> <argument1> 189

� Binary operator (two arguments) : <argument1> <operator> <argument2> 190

where <operator> is the operator, and <argument1> and <argument2> are the 191

effective arguments of the operator. Here is a partial list of operators used internally 192

by R: 193

+, -, *, /, ˆ, %%, %/%, &, |, !, ==, !=, <, <=, >=, >.

A priori, these operators cannot be modified by the user.4 It is however possible to 194

define extra operators. They are of the form %<operator>% and some are already 195

available in the base system, for example, %in% and %o% (seen in Chap. 5). 196

Tip

To display the source of the function (the operator) %in%, use the instruction
get("%in%"). You can see that it uses the function match() which you may
find useful.

Suppose we wish a more synthetic way to concatenate strings of characters, 197

which is normally done with the function paste(). 198

> "%+%" <- function(ch1,ch2) paste(ch1,ch2,sep="")
> name <- "Peter"
> "The life of " %+% name %+% " is beautiful!"
[1] "The life of Peter is beautiful!"
> # This is a simplification of:
> paste("The life of ", name ," is beautiful!",sep="")
[1] "The life of Peter is beautiful!"

Note that since the name of the function is not alphanumeric, it has to be put 199

between quotation marks. It is of course up to you whether you prefer one or the 200

other form. We are not trying to diminish the usefulness of the function paste(), 201

which is a much richer function than the simple operator %+% we have created (the 202

creation actually used the function paste()). We are rather trying to show the flex- 203

ibility of R which allows, with a simple function definition, a simplification of the 204

calling syntax. 205

4 In fact, this group of operators can be used by a user when developing a new class of objects. But
this matter is too advanced for this book!

UNCORRECTED
PROOF

204 8 Programming in R

Tip

You can use operators to define operations on sets, such as those presented
on p. 99. For example, the union between two sets A and B can be defined as

> "%union%" <- function(A,B) union(A,B)
> A %union% B
[1] 4 6 2 7 1 3

8.2.5 R Seen as a Functional Language 206

R is a functional language in the sense that almost any code execution in R is done 207

by calling functions, possibly scattered with control structures. In fact, you may be 208

surprised to learn that the following features of R are also controlled by functions. 209

We have seen that simply calling an R object results in the display of its contents. In 210

fact, in such an instruction,R calls (without notifying the user) the function print() 211

with effective argument the name of the object. Because this function is often used 212

in R, it has a particular status; we shall discuss this further later on. All affectation 213

operations (i.e. instructions with <-) are handled by functions whose names include 214

(no surprise here) the distinctive sign <-5. Developing and maintaining the R system 215

can be summarized as the construction of a range of functions. First are the basic 216

functions, included in the basic installation of R. Usually, they cannot be modified 217

by the user6, and even when they can be, we strongly advise against it; let your 218

system become unusable. Second are the functions developed directly in R7 by any 219

user. Many functions are made available by the community of R developers through 220

a system of packages (more on this later). 221

SECTION 8.3

� Object-Oriented Programming
222

In this section, we shall view an object as more than a quantity that can be saved 223

and reused. We shall come closer to the spirit of the R language by looking at the 224

internal object-oriented mechanism which governs most of its use. The incredible 225

part is that the user does not need to worry about knowing the internal workings 226

of R. According to us, this is a strong point of R. Nonetheless, this section should 227

5 To see this, type in the command line apropos("<-").
6 The core of R is developed in the C language for obvious reasons of speed of execution, which
makes it rather reactive when used in the command line.
7 To speed up execution, it is usually possible to convert an R function into C and then to call it
from R via the C API.

UNCORRECTED
PROOF

8.3 � Object Oriented Programming 205

help users better understand how R proposes results. We expect this will lead to a 228

less “random” and more controlled use of R. 229

8.3.1 How the Internal Object-Oriented Mechanism Works 230

8.3.1.1 Class of an Object and Declaring an Object 231

What matters in R is specifying the class of an object with the function 232

"class<-"(). Recall that the function class() is used to check the class of 233

an object. 234

> obj <- 1:10
> class(obj)
[1] "integer"
> class(obj) <- "MyClass"
> class(obj)
[1] "MyClass"
> class(obj) <- "OtherClass"
> obj
[1] 1 2 3 4 5 6 7 8 9 10
attr(,"class")
[1] "OtherClass"

The object obj of class integer is now an object of class OtherClass. The last 235

display of the object obj indicates the class of the object, where attr stands for 236

attribute. We shall come back to the notion of attributes at the end of this chapter. 237

For now, it is enough to understand the meaning of the display attr(,"class") 238

which is literally the “class attribute”. 239

Advanced users

That said, the above is not quite true: the object obj has kept the character-
istic of also being of the integer class, as the following output shows:

> obj*2
[1] 2 4 6 8 10 12 14 16 18 20
attr(,"class")
[1] "OtherClass"

Indeed, all the elements of the vector obj have been multiplied by 2. We
hope that in future versions of R, the output of the function class() applied
to such an object will be similar to [1] "OtherClass" "integer", which
would better show the true nature of the object.

There are two ways of knowing whether an object is of a given class: 240

> class(obj)=="MyClass"
[1] FALSE

UNCORRECTED
PROOF

206 8 Programming in R

> inherits(obj,"MyClass")
[1] FALSE

The function inherits() should be preferred, as we shall see when we consider 241

polymorphic objects with several classes. 242

Tip

To see the class of the function function(), you can use this instruction:

> class(function() fg)
[1] "function"

For the function ":"() , use class(get(":")).

8.3.1.2 Declaring Objects and Using Methods 243

The mechanism for object-oriented programming is rather simple and original in R, 244

compared to many other languages. To illustrate this mechanism, examine the most 245

used example in R: the display of an object with the function print(). Examine 246

the following R outputs: 247

> vect <- 1:10
> class(vect)
[1] "integer"
> vect
[1] 1 2 3 4 5 6 7 8 9 10
> print(vect)
[1] 1 2 3 4 5 6 7 8 9 10

No surprises so far, although it is worth pointing out that simply entering an R 248

object in the command line seems to provoke a call to the function print() with 249

the given object as effective argument. The next example confirms this idea8: it dis- 250

plays an object of the class formula, characterized by the tilde symbol (�). In this 251

example, we save in the variable form the formula expressing the relationship be- 252

tween y and x. Note that the objects y and x do not need to exist, since no evaluation 253

is done when a formula is defined.9 254

> form <- y�x
> class(form)
[1] "formula"
> form
y � x
> print(form)
y � x

8 In fact, for auto-printing base objects (vectors, matrices, lists, etc.) in the console, R does not
use the print() function, but calls a C function named PrintValueEnv, which is not directly
available to the user.
9 No further details are needed for now; we shall come back to this very original class of objects.

UNCORRECTED
PROOF

8.3 � Object Oriented Programming 207

Note that the function print() works differently for different classes of ob- 255

jects. For the variable form (of class "formula"), print() returned y�x, which 256

is the instruction to the right of the affectation arrow. For the variable vect, calling 257

print() returns [1] 1 2 3 4 5 6 7 8 9 10 when we might have expected it 258

to display 1:10. Here is the code of the function print(): 259

> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>

The body of this function indicates that the function UseMethod()must be exe- 260

cuted. This function is a generic function in R. Like an airport traffic control tower, 261

it is used to redirect the object, according to its class, to the correct function call. 262

In the last example, this corresponds to calling the display function associated with 263

the class formula of the form print.formula(). In the object-oriented program- 264

ming vernacular, such functions, of the general type <method>.<class>, are called 265

methods. This explains the name of the function UseMethod() in the body of the 266

generic function print(). 267

Here is what happens in the backstage to simply display the object form : 268

> form # Calls the function print(),
which calls the function print.formula().

y�x
> print.formula(form)
y�x

Advanced users

To check how easy it is to change the general behaviour of R by chang-
ing one function, we are going to redefine the display function for the class
formula. We are simply going to keep the standard display and add the string
of characters "formula:".

> print.formula <- function(obj,...) f
+ cat(paste("formula:",paste(sapply(obj[c(2,1,3)],
+ as.character),collapse="")))
+ invisible(obj)
+ g
> y�x
formula: y�x

If you are a beginner in R, you should not try to understand the details of the
R code leading to this result. Although the code seems simple, understanding it
requires notions which we cannot go into in this book. Once again, the aim is
rather to reveal the introspective power of R, since even its base elements can
be manipulated.

To restore the initial behaviour of R for displaying formulae, you will have
guessed that it suffices to delete the new function print.formula()with the
command line instruction rm(print.formula). We shall not delete it yet,
because we need this behaviour later on.

UNCORRECTED
PROOF

208 8 Programming in R

If you have understood the way the function print() works, you might expect 269

that there exists a function print.integer(). We can check this: 270

> print(vect)
[1] 1 2 3 4 5 6 7 8 9 10
> print.integer(vect)
Error in eval(substitute(expr), envir, enclos) :

could not find function "print.integer"

The function print.integer() does not exist. In fact, when there is no method 271

associated with a class, R executes the default method, which is of general form 272

<method>.default; in this case, print.default(). Here is the output of this 273

function for our two examples: 274

> print.default(vect)
[1] 1 2 3 4 5 6 7 8 9 10
> print.default(form)
y � x
attr(,"class")
[1] "formula"
attr(,".Environment")
<environment: R_GlobalEnv>
> # Compare with:
> form
formula: y�x

We now have a complete explanation of what happens behind the scenes. We also 275

see that the display of a formula does not use the default method, as the last output 276

suggests. 277

Tip

Also note that the function print.default() is used to display all base
objects (or structures) of R when these objects are taken as effective arguments
of the function print().

In summary, to define a new family of methods, denoted here by <method> 278

(name of the family of methods you wish to create), which can be applied to any 279

type of object, you need to: 280

� First declare the generic function in the following form: 281

<method> <- function(obj,...) UseMethod("<method>") 282

� Then create a method <method> for a class <class>: 283

<method>.<class> <- function(obj,<list of arguments>) <body 284

of the method> 285

where <list of arguments> and <body of the method> are, respectively, 286

an optional list of formal arguments and the contents of this method, which is 287

nothing else than a function when called in its long version. 288

UNCORRECTED
PROOF

8.3 � Object Oriented Programming 209

Note

Note that when declaring a family of methods, you can dissociate the name
of the generic function and the argument of the function UseMethod() corre-
sponding to the name of the method to call. Thus, it is easy to define an alias,
called <alias>, of the last family of methods by simply defining a new generic
function:

<alias> <- function(obj,...) UseMethod("<method>")

As a result, the two command line calls <method>(<object>) and
<alias>(<object>) for an object <object> of class <class> are equiv-
alent to <method>.<class>(<object>). A rather surprising application is
that a method can be translated like this. In the next example, the French voir
is used as an alias of print:

> voir <- function(obj,...) UseMethod("print")
> voir(vect)
[1] 1 2 3 4 5 6 7 8 9 10
> voir(form)
formula: y�x
> rm(print.formula) # Remove our method to return

to the normal mode.
> voir(form)
y � x
> form
y � x

8.3.2 Back to the Practical Problem 289

The user realizes that he/she has repeated the execution of the estimations of a and 290

b twice when creating the functions mydisplay.reg1() and mysummary.reg1() 291

introduced in Sect. 8.2.3 (lines 2 and 3, and lines 8 and 9). He asks advice from a 292

more advanced user, who suggests using the concept of object-oriented program- 293

ming. He/she proposes to create a function10 to return an object of class reg1, so 294

that it can be reused thereafter as first calling argument for any method of the said 295

class. 296

297
1 r e g l i n <� f u n c t i o n (y , x) f 298

2 a E s t <� cov (x , y) / v a r (x) 299

3 b E s t <� mean (y)� a E s t�mean (x) 300

4 r e g <� l i s t (y=y , x=x , a E s t=aEst , b Es t=b E s t) 301

5 c l a s s (r e g) <� " r eg1" 302

6 r e t u r n (r e g) 303

7 g 304
305

10 This kind of function is often called a constructor in object-oriented programming.

UNCORRECTED
PROOF

210 8 Programming in R

They now define the method mydisplay.reg1() which can be used on any 306

object of class reg1. 307

308
1 m y d i sp lay . r e g 1 <� f u n c t i o n (r e g) f 309

2 p l o t (reg$y , r eg $ x) 310

3 a b l i n e (a= r eg$bEs t , b= r e g $ a E s t) 311

4 g 312

5 313

6 mysummary . r eg 1 <� f u n c t i o n (r e g) r e t u r n (r e g) 314
315

They try a few tests: 316

> reg <- reglin(y,x)
> mysummary(reg)
Error in eval(substitute(expr), envir, enclos) :

could not find function "mysummary"
> mydisplay(reg)
Error in eval(substitute(expr), envir, enclos) :

could not find function "mydisplay"

The user did not expect such errors, so he/she checks that the function is well 317

defined: 318

> mysummary.reg1(reg)
$y
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
[1] 1 2 3 4 5 6 7 8 9 10
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"

The advanced user points out the mistake: the generic functions mysummary and 319

mydisplay have not been declared and are not standard, unlike a few others such 320

as print() and summary(). 321

322
1 mysummary <� f u n c t i o n (x , . . .) UseMethod ("mysummary") 323

2 m y d i sp lay <� f u n c t i o n (x , . . .) UseMethod ("m y d isp lay") 324
325

The previous instructions now work: 326

> mysummary(reg)
$y
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
[1] 1 2 3 4 5 6 7 8 9 10
$aEst
[1] -0.1019453

UNCORRECTED
PROOF

8.3 � Object Oriented Programming 211

$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"
> mydisplay(reg)

2 4 6 8 10

−0
.5

0.
0

0.
5

1.
0

1.
5

x

y

Fig. 8.1: Result of the call of the function mydisplay.reg1()

Since the method print.reg1() has not been defined, you may wonder what 327

would happen when we simply enter the name of the object. 328

> reg
$y
[1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
[6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
[1] 1 2 3 4 5 6 7 8 9 10
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"

We already knew that the method print.default() is called in such cases. 329

8.3.3 Information About Methods 330

To get information about methods, R has the function methods(): 331

> methods("formula") # Or more directly methods(formula).
[1] formula.character* formula.data.frame* formula.default*
[4] formula.formula* formula.glm* formula.lm*
[7] formula.nls* formula.terms*

UNCORRECTED
PROOF

212 8 Programming in R

Non-visible functions are asterisked
> methods(class="formula")
[1] [.formula* aggregate.formula*
[3] alias.formula* all.equal.formula
[5] ansari.test.formula* bartlett.test.formula*
[7] boxplot.formula* cdplot.formula*
[9] cor.test.formula* deriv.formula
[11] deriv3.formula fligner.test.formula*
[13] formula.formula* friedman.test.formula*
[15] ftable.formula* getInitial.formula*
[17] kruskal.test.formula* lines.formula*
[19] mood.test.formula* mosaicplot.formula*
[21] pairs.formula* plot.formula*
[23] points.formula* ppr.formula*
[25] prcomp.formula* princomp.formula*
[27] print.formula quade.test.formula*
[29] selfStart.formula* spineplot.formula*
[31] stripchart.formula* t.test.formula*
[33] terms.formula update.formula
[35] var.test.formula* wilcox.test.formula*

Non-visible functions are asterisked

Warning

Do not confuse the two uses. The first instruction outputs all methods (of
the form <method>.<class>) associated with the generic function formula.
The second instruction gives all methods for the class formula.

Here are a few examples to better understand the distinction between the two 332

uses of the function methods(). 333

> class(y�x)
[1] "formula"
> update(y�x,.�.+z) # Apply the method update() to an

object of class formula.
y � x + z
> update.formula
function (old, new,...)
f

tmp <-.Internal(update.formula(as.formula(old),
as.formula(new)))

out <- formula(terms.formula(tmp, simplify = TRUE))
return(out)

g
<environment: namespace:stats>
> form <- "y�x"
> class(form)
[1] "character"
> formula(form)
y � x
> formula.character
Error: object "formula.character" not found

UNCORRECTED
PROOF

8.3 � Object Oriented Programming 213

Tip

Functions followed with an asterisk can be executed, but the body
of the function cannot be visualized. You can however use the function
getAnywhere().

> getAnywhere(formula.character)
A single object matching ‘formula.character’ was found
It was found in the following places

registered S3 method for formula from namespace stats
namespace:stats

with value
function (x, env = parent.frame(), ...)
f

ff <- formula(eval(parse(text = x)[[1L]]))
environment(ff) <- env
ff

g
<environment: namespace:stats>

8.3.4 Inheriting Classes 334

In the context of our practical problem, the advanced user informs the beginner user 335

that R already has a set of functions to manage linear models. Indeed, the function 336

lm() is dedicated to this kind of treatment (as we shall see in Chap. 14). However, 337

he/she adds that to his knowledge, no functions exist to perform the specific treat- 338

ment they propose. The two users work together to develop an extension; they want 339

to avoid “reinventing the wheel” and make the most of existing functions in R. 340

In object-oriented programming, the notion of class inheritance seems appropri- 341

ate for this kind of extension. Inheritance expresses the fact that an object of a certain 342

class can also behave like all objects of supplementary classes. Such a mechanism 343

is available in R, by associating a sequence of classes with an object. Thus, when 344

a method is applied to an object which has a hierarchy of classes, the first class is 345

solicited first. If the method exists for this class, it is executed. Otherwise, R tests 346

whether there is an executable method in the class hierarchy. If there is, that method 347

is executed; otherwise, the default method is executed, as long as it is defined. Fi- 348

nally, if none of the above apply, an execution error is generated. Let us illustrate this 349

notion with the problem of our two users. First, we need to declare the constructor 350

function of the new class lm1, which inherits directly from the existing class lm. 351

UNCORRECTED
PROOF

214 8 Programming in R

352
1 lm1 <� f u n c t i o n (. . .) f 353

2 o b j <� lm (. . .) 354

3 i f (n c o l (model . f rame (o b j)) >2) s t o p ("more t h a n one 355

4 i n d e p e n d e n t v a r i a b l e ") 356

5 c l a s s (o b j) <� c ("lm1" , c l a s s (o b j)) # Or c ("lm1" ,"lm") 357

6 o b j 358

7 g 359
360

Apply this to the same variables as before. 361

> reg <- lm1(y�x)
> reg
Call:
lm(formula = ..1)
Coefficients:
(Intercept) x

0.7823 -0.1019

We can see inheritance in action. No method print.lm1() is defined, and yet 362

the object is not displayed as with print.default(). This is because R already 363

knows the method print.lm() and the object reg inherits methods from the class 364

lm. There are several ways of checking that this object is indeed inheriting from 365

this class; the simplest is visualizing the contents of the class attribute with the 366

function class(). A developer might prefer the more direct function inherits(). 367

> class(reg)
[1] "lm1" "lm"
> inherits(reg,"lm")
[1] TRUE
> print.lm(reg)
Call:
lm(formula = ..1)
Coefficients:
(Intercept) x

0.7823 -0.1019

Line 3 (which we shall not comment) in function lm1() tests whether the for- 368

mula is a simple regression model formula. See what happens in this next example: 369

> lm1(y�x+log(x))
Error in lm1(y � x + log(x)) : more than one

independent variable

We continue developing functions in the same spirit as 370

371
1 p l o t . lm1 <� f u n c t i o n (ob j , . . .) f 372

2 p l o t (f o r m u l a (o b j) , . . .) 373

3 a b l i n e (o b j) 374

4 g 375
376

UNCORRECTED
PROOF

8.3 � Object Oriented Programming 215

> summary(reg)
Call:
lm(formula = ..1)
Residuals:

Min 1Q Median 3Q Max
-0.8735 -0.3772 -0.2060 0.4153 1.2117
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.78229 0.48348 1.618 0.144
x -0.10195 0.07792 -1.308 0.227
Residual standard error: 0.7077 on 8 degrees of freedom
Multiple R-squared: 0.1763, Adjusted R-squared: 0.07328
F-statistic: 1.712 on 1 and 8 DF, p-value: 0.2271
> plot(reg,main="An example of simple regression")

2 4 6 8 10

−0
.5

0.
0

0.
5

1.
0

1.
5

An example of simple regression

x

y

377

In the call of summary() above, the method summary.lm1() has not been de- 378

veloped; hence, the standard method summary.lm() is executed. Indeed, the object 379

reg of class lm1 then inherits from the class lm for all standard methods proposed 380

by R to manage linear models. For the call of the method plot(), the freshly created 381

method plot.lm1 is invoked. 382

Note

Note that R has a standard method plot.lm() which creates a set of plots
for a more detailed analysis of the results (see Chap. 14). We have intentionally
changed the default behaviour of R for simple linear regression, but can still
access this method by calling it explicitly (plot.lm(reg)).

UNCORRECTED
PROOF

216 8 Programming in R

Advanced users

Object-oriented programming is extremely simple in its conception. There
are many object-oriented programming languages. An important difference
is that the vast majority offer an encapsulation of object fields and meth-
ods; one of the points of this encapsulation is that the fields of an object
can be modified within a method. This is not directly possible in R because
of the strict local scope of variables inside the code of an R function. The
users can however adopt this kind of programming if they want to. Any
method <method>.<class>()which needs to modify the fields of an object
<object> (of class <class>) must then return the object itself. The user of
the generic function <method>() can then affect the result to the initial object,
as follows:
<object> <- <method>(<object>). However, this risks to slow down exe-
cution, all the more if the contents of the object fields are large. This is because
the object is completely duplicated. We hope that R developers will one day
offer a more elegant standard functionality (analogous to what the majority of
object-oriented programming languages offer), whereby only the relevant fields
(of which there are usually few) are modified inside the body of the method.
When you become an advanced user (as we hope), you will notice that the no-
tion of pointers (which is very common in programming) is not directly offered
to R developers (see however the function tracemem() as well as Sect. 9.8.2.2,
p. 296).

SECTION 8.4

� Going Further in R Programming
383

Before you start programming in a language, it is good to know the spirit in which it 384

was conceived. In this section, we shall explore structures of the R language which 385

you do not need to know when you start using R, but which you will find very useful 386

when you decide to go deeper in your use of R. These elements make R an original 387

and powerful tool. We advise beginner users to skim through this section without 388

trying to master the concepts. All the information in this section is second level, in 389

the sense that a very powerful use of R is possible without it. 390

8.4.1 R Attributes 391

An R object includes primary information, conveyed by the basic structures pre- 392

sented in this book. There is another level of information, which we call secondary 393

information. It is attached to an object with attributes and can be accessed with the 394

function attributes(). 395

UNCORRECTED
PROOF

8.4 � Going Further in R Programming 217

> mat <- matrix(1:10,nrow=2)
> mat

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> class(mat)
[1] "matrix"
> attributes(mat)
$dim
[1] 2 5

We shall comment on this output later. For now, let us insist again on the fact that 396

this mechanism is supposed to be transparent for the user, who usually cares more 397

about the contents of the R object. For day-to-day use, we advise you not to change 398

attributes directly. This stand is justified by the existence of many functions to ma- 399

nipulate attributes indirectly. However, a developer who wishes to learn more about 400

the internal workings of R will discover a few supplementary characteristics which 401

usually enlighten the behaviour of the object. We have already indirectly manipu- 402

lated the attribute class with the functions class() and "class<-"(). We shall 403

also manipulate the three other main attributes: dim, names and dimnames. These 404

are used a lot in the internal management of R. The next example is only interesting 405

to present how to handle attributes. The complementary function attr() is used to 406

manipulate a single attribute at a time, whereas the function attributes() returns 407

all attributes as an R list. 408

> vect <- 1:10
> attr(vect,"test") # Returns NULL, because vect has no

attribute test.
NULL
> attributes(vect) # NULL because vect has no attributes.
NULL
> # Affecting an attribute "attrib1" containing the character

string "TEST1".
> attr(vect,"attrib1") <- "TEST1"
> attr(vect,"attrib1")
[1] "TEST1"
> # Affecting an attribute "attrib2" containing the vector c(1,3)
> attributes(vect)$attrib2 <- c(1,3)
> attributes(vect)
$attrib1
[1] "TEST1"
$attrib2
[1] 1 3
> attr(vect,"attrib2")
[1] 1 3
> # Modifying attribute "attrib1" and deleting attribute

"attrib2"
> attributes(vect)$attrib1 <- 3:1
> attr(vect,"attrib2") <- NULL
> attributes(vect)
$attrib1
[1] 3 2 1

UNCORRECTED
PROOF

218 8 Programming in R

> # Deleting all attributes at once
> attributes(vect) <- NULL
> attributes(vect)
NULL

The attribute access mechanism is simple to use. This example has shown how 409

to change attributes using the functions "attr<-"() and "attributes<-"(). The 410

value of an attribute can be any R object. Affecting NULL to an attribute deletes it. 411

8.4.1.1 Attribute class 412

In Sect. 8.3, we have manipulated the attribute class using the functions class() 413

and "class<-"(). This shows that you do not need to know how to manipulate 414

attributes directly. We return to the example we used, to show that manipulating this 415

attribute is equivalent to using the utility functions class() and "class<-"(). 416

> form <- y�x
> attributes(form)
$class
[1] "formula"
$.Environment
<environment: R_GlobalEnv>
> class(form)
[1] "formula"
> obj <- 1:10
> attr(obj,"class") # No class attribute.
NULL
> class(obj) # And yet!
[1] "integer"
> attr(obj,"class") <- "MyClass" # Equivalent to class(obj) <-

"MyClass".
> class(obj)
[1] "MyClass"

There is nothing left to say about this attribute, even though it plays a central role 417

in object-oriented programming in R. 418

8.4.1.2 Attribute dim 419

The attribute dim plays an important role in the behaviour of matrix and array 420

objects. Here is an example with a matrix: 421

> mat <- matrix(1:12,nrow=2)
> mat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12
> attr(mat,"dim")
[1] 2 6

UNCORRECTED
PROOF

8.4 � Going Further in R Programming 219

> attributes(mat)
$dim
[1] 2 6
> attr(mat,"dim") <- c(3,4) # Changing shape: 3 rows and 4

columns.
> mat

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> attributes(mat)$dim <- c(2,6) # Back to the initial shape.
> mat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12

In this example, changing the attribute dim allowed us to change the shape of 422

the matrix. We have already mentioned that attribute management is meant to be 423

transparent for the user, so you might expect there exist similar functions with more 424

user-friendly names. For this example, we could have used the functions dim() and 425

"dim<-"() : 426

> dim(mat)
[1] 2 6
> dim(mat) <- c(1,12) # Changing shape: 1 row and 12 columns.
> mat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 1 2 3 4 5 6 7 8 9 10 11

[,12]
[1,] 12
> dim(mat) <- c(2,6) # Back to the initial shape.

To really understand how R represents objects such as matrices and arrays, let us 427

analyse the following output: 428

> mat
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12
> class(mat)
[1] "matrix"
> dim(mat) <- NULL # Or attributes(mat)$dim<-NULL or

attributes(mat) <- NULL.
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector(mat)
[1] TRUE
> class(mat)
[1] "integer"
> dim(mat) <- c(2,2,3)
> mat
, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

UNCORRECTED
PROOF

220 8 Programming in R

, , 2
[,1] [,2]

[1,] 5 7
[2,] 6 8
, , 3

[,1] [,2]
[1,] 9 11
[2,] 10 12
> is.vector(mat)
[1] FALSE
> class(mat)
[1] "array"

When we delete the attribute dim, the object mat becomes a simple vector. When 429

we affect a vector of three integers to this attribute, the object mat becomes an array 430

of dimension 3. The different behaviours of vectors, matrices and arrays thus stem 431

from the value of the attribute dim. 432

Warning

Although the display is the same, a vector and a single-index array are
treated differently by R, as shown by these few lines of code:

> dim(mat) <- 12
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector(mat)
[1] FALSE
> class(mat)
[1] "array"
> identical(mat,1:12)
[1] FALSE
> dim(mat) <- NULL
> mat
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> is.vector(mat)
[1] TRUE
> class(mat)
[1] "integer"
> identical(mat,1:12)
[1] TRUE

It looks like we have said everything about the attribute dim, but there is one 433

last application worth noting. The only difference between a vector and a list is that 434

the elements of a vector must all have the same type. Matrices and arrays usually 435

contain elements of the same nature as well; this constraint is very important for 436

matrix operations. But as storage structures, you could imagine extending the matrix 437

and array concepts to lists, by affecting the dim attribute, as is done with vectors. 438

The documentation files for the matrix() and array() instructions show that this 439

is the case, since the first calling argument of these functions can be a list instead of 440

UNCORRECTED
PROOF

8.4 � Going Further in R Programming 221

a vector. The next example applies this to a matrix; the same could be done with an 441

array, as long as the number of elements in the list agrees with the dimension. 442

> lmat <- matrix(list(7,1:2,1:3,1:4,1:5,1:6),nrow=2)
> lmat # Returns the structure and not the contents, which

are too difficult to display.
[,1] [,2] [,3]

[1,] 7 Integer,3 Integer,5
[2,] Integer,2 Integer,4 Integer,6
> dim(lmat)
[1] 2 3
> is.list(lmat)
[1] TRUE
> lmat[1,2] # Extract the element at row 1 and column 2.
[[1]]
[1] 1 2 3
> lmat[,-2] # Extract the submatrix with the second column

removed.
[,1] [,2]

[1,] 7 Integer,5
[2,] Integer,2 Integer,6
> dim(lmat) <- NULL
> lmat # This is just a list now.
[[1]]
[1] 7
[[2]]
[1] 1 2
[[3]]
[1] 1 2 3
[[4]]
[1] 1 2 3 4
[[5]]
[1] 1 2 3 4 5
[[6]]
[1] 1 2 3 4 5 6
> is.list(lmat)
[1] TRUE

8.4.1.3 Attributes names and dimnames 443

The attribute names plays an important role in naming elements of a list. 444

> li <- list(1:3,letters[1:3])
> li
[[1]]
[1] 1 2 3
[[2]]
[1] "a" "b" "c"
> attributes(li)
NULL
> attributes(li)$names <- c("numbers","letters")
> li
$numbers

UNCORRECTED
PROOF

222 8 Programming in R

[1] 1 2 3
$letters
[1] "a" "b" "c"

The first and fourth instructions are thus equivalent to the following, more com- 445

mon declaration: 446

> li <- list(numbers=1:3,letters=letters[1:3]))

It is a less useful and lesser known fact that this attribute can also be used on any 447

type of vector. 448

> vect <- 1:3
> attr(vect,"names") <- letters[1:3]
> vect
a b c
1 2 3
> # Or directly
> vect2 <- c(a=1,b=2,c=3)
> vect2
a b c
1 2 3

You do not need to manipulate the attribute names directly. Accessing and chang- 449

ing its value can be done explicitly: 450

> names(li)
[1] "numbers" "letters"
> names(li) <- c("num","lett")
> li
$num
[1] 1 2 3
$lett
[1] "a" "b" "c"
> names(vect)
[1] "a" "b" "c"
> names(vect) <- toupper(names(vect))
> vect
A B C
1 2 3

For objects with several indices, such as matrices and arrays, index name man- 451

agement is done internally by modifying the attribute dimnames, as shown in this 452

quick example. 453

> mat <- matrix(1:6,nr=2)
> mat

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> attributes(mat) # Can be modified as an attribute.
$dim
[1] 2 3
> rownames(mat) # Row names.
NULL
> colnames(mat) # Column names.

UNCORRECTED
PROOF

8.4 � Going Further in R Programming 223

NULL
> dimnames(mat) # Row and column names as a list.
NULL
> colnames(mat) <- paste("V",1:3,sep="")
> rownames(mat) <- c("a","b")
> mat

V1 V2 V3
a 1 3 5
b 2 4 6

For an array with more than two dimensions, the functions rownames and 454

colnames are meaningless. You can either modify the attribute dimnames directly 455

or use the function "dimnames<-"(). 456

Note

Data frames have a special status. They are defined as lists and are usu-
ally manipulated as matrices. The attributes for row and column names are
row.names and names (instead of col.names) :

> df <- data.frame(a=1,b=1:2)
> df

a b
1 1 1
2 1 2
> attributes(df)
$names
[1] "a" "b"
$row.names
[1] 1 2
$class
[1] "data.frame"
> names(df) # As a list.
[1] "a" "b"
> dimnames(df) # As an array: list of two vectors.
[[1]]
[1] "1" "2"
[[2]]
[1] "a" "b"
> rownames(df) # As a matrix: accessing the row names.
[1] "1" "2"
> colnames(df) # As a matrix: accessing the column names.
[1] "a" "b"

The last four lines give calls to access these attributes without manipulating
them directly. Corresponding forms exist to change their values. Note that the
attribute class() gives the class of the object.

UNCORRECTED
PROOF

224 8 Programming in R

8.4.2 Other R Objects 457

It could be said that one of the specificities of R is that the vast majority of quantities 458

manipulated by R are allocated to variables and can thus be reused later on. There are 459

a few exceptions, mostly control structures. R objects are of different types, called 460

classes. We have already encountered object classes used to store common data. 461

There are three other object types we chose to explore as well. Surprisingly, formu- 462

lae and environments are also objects in R; we shall also introduce R expressions, 463

which are objects in which R code can be stored to be executed at a later time. 464

8.4.2.1 R Expressions 465

So far, we have said nothing on structures used to described the syntactic bases of R. 466

Following its philosophy of managing as many components as possible, R can ma- 467

nipulate an R expression and split it into a sequence of atomic entities (such as call, 468

name. . .). We only mention these capacities, without going into the details. We shall 469

focus on R expressions which are truly of interest to an R developer. It is difficult 470

to give a rigorous definition of R expressions. We propose the following definition, 471

inspired by command line use of R. An R expression can be seen as R code entered 472

in sequence as command lines until it is executed by the R interpreter (i.e. until the 473

character > is displayed, inviting a new command). This expression can spread over 474

several lines. The function expression() is used to declare an R expression when 475

it is used with a single calling argument. It is however possible to give a sequence 476

of expressions, each expression corresponding to one effective argument in the call 477

of a function. An expression object is not evaluated by the R interpreter but can be 478

saved to be evaluated later, as many times as needed. Evaluating an R expression is 479

done with the function eval(). All of this is illustrated in this example: 480

> expression(v<-"value") # The expression v<-"value"
is not evaluated.

expression(v <- "value")
> v
Error in eval(substitute(expr), envir, enclos) :
object ’v’ not found
> expression(v<-"value") -> expr # Saved in the object expr.
> expr
expression(v <- "value")
> eval(expr) # Evaluating expr.
> v # Here is the expected

result.
[1] "value"
> expression(v<-"value2",v) -> expr # Equivalent to 2 lines of

unevaluated commands.
> expr
expression(v <- "value2", v)
> eval(expr) # The second instruction

displays the contents of
v.

[1] "value2"

UNCORRECTED
PROOF

8.4 � Going Further in R Programming 225

A developer will find it useful to convert a character string describing R code into 481

an R expression to be evaluated at another time. The function parse() is used to 482

this effect: 483

> parse(text=’v<-"value"’) -> expr
> expr
expression(v<-"value")
attr(,"srcfile")
<text>
> eval(expr)
> v
[1] "value"

The formal argument text is used here to read a character string, but the first use 484

of the function is to read a file containing R code; the name of the file is given as the 485

first effective argument. 486

Tip

Here is an example using the functions eval() and parse():

> for (i in 1:3) eval(parse(text=paste("a",i," <- i",sep="")))
> a2
[1] 2

We are now going to manipulate the function expression() to describe some 487

of the internal behaviour of R. This will help understand why R is said to be a 488

functional language (i.e. which makes an intensive use of functions). It is surprising 489

how true this is. This first point shows that upon execution, affectation is considered 490

as an operator (a function with two arguments). The first argument corresponds to 491

the variable, the second to the contents. 492

> foo <- "foo"
> foo
[1] "foo"
> "<-"(foo,"foo2") # Equivalent to: foo <- "foo2"
> foo
[1] "foo2"
> expression("<-"(foo,"foo2")) # as shown by the output of this

expression.
expression(foo <- "foo2")

We continue our exploration with brackets. One of the uses of brackets is to order 493

execution priorities in an R expression. Again, R treats them as a function. 494

> 30*(10+20)
[1] 900
> 30*"("(10+20) # This is what is executed behind the scenes.
[1] 900
> expression(30*10+20))
expression(30 * (10 + 20))
> expression(30*"("(10+20))
expression(30 * (10 + 20))

UNCORRECTED
PROOF

226 8 Programming in R

The same is true for the notion of expression blocks. An expression block is 495

defined as a sequence of R expressions, grouped between curly bracket delimiters 496

"{" and "}". 497

> f
+ print("line1")
+ print("line2")
+ g
[1] "line1"
[1] "line2"
> "f"(print("line1"),print("line2"))
[1] "line1"
[1] "line2"
> expression(f
+ print ("line1") # This comment is not interpreted.
+
+ # Neither is this comment.
+ print("line2")
+ g)
expression(f

print("line1")
print("line2")

g)
> expression("f"(print("line1"),print("line2")))
expression(f

print("line1")
print("line2")

g)
Note that comments and spaces are ignored by the R interpreter. Note also that 498

to make your code easier to read, you can add as many carriage returns as you wish 499

in a block without any effect on its execution. 500

8.4.2.2 R Formulae 501

The formula object is one of the specificities of R. It is mainly used to establish 502

a relationship between two parts, separated with a tilde �. Both parts must be R 503

expressions. Keeping in mind what we have learnt about the function expression(),504

we can see how R converts a formula into a "�"() function upon execution. 505

> y�x
y � x
> "�"(y,x) # Equivalent expression,
y � x
> expression("�"(y,x)) # as this expression proves.
expression(y � x)

For developers, formula objects can be used to offer a more user-friendly inter- 506

face, since they are closer to the human language. For example, the R formula y�x 507

can express that y and x are linked or that y is a function of x. Generally speak- 508

ing, the developer bears the responsibility of interpreting the formula to perform the 509

UNCORRECTED
PROOF

8.4 � Going Further in R Programming 227

necessary tasks. This is very advanced; we refer the interested reader to the R docu- 510

mentation files. Here are a few examples with no particular meaning, but which will 511

help become familiar with this new object: 512

> y�x
y � x
> y�(x+y:z)*t|v
y � (x + y:z) * t | v
> y1+y2|w � (x+y:z)*t|v
y1 + y2 | w � (x + y:z) *t | v

It is worth pointing out that even if the quantities mentioned in the formulae 513

above are not existing R objects, no error is thrown. However, remember that a 514

syntax error results in an error message: 515

> y�x+y)*t|v
Error : ’)’ not expected in "y�x+y)"

We now focus on usage of formulae in the R system. Since formulae are not common 516

objects, the user may not realize that they are saved like any other R object. 517

> form <- y�x
> form
y � x

The two main uses are for plots and for statistics. 518

For plots, this is an alternative to what we introduced in Chap. 7. 519

> x <- runif(10)
> y <- runif(10)
> plot(x,y)
> plot(y�x)

The resulting plot is not shown here, since the only interest is in showing that 520

the instructions with or without the formula are equivalent. Note that the variables x 521

and y are inverted between the two forms. The version with the formula plot(y�x) 522

expresses more literally the action we want: plot y as a function of x. This version, 523

which we find elegant, is of course also available for the complementary functions 524

points() and lines(). 525

In a statistical context, a function relative to the specific treatment of a statistical 526

model takes as input argument a formula establishing the relationship between the 527

variables of the model (the formula is often the first argument). The most simple 528

example is the linear model; here is an example11: 529

> lm(y�x) # x and y must be defined (and they are in this
case!)

Call:
lm(formula = y � x)
Coefficients:
(Intercept) x

0.46290 -0.06904

11 This section does not give details on handling linear models in R; this will be the focus of
Chap. 14.

UNCORRECTED
PROOF

228 8 Programming in R

> lm(form) # Recall that: form <- y�x
Call:
lm(formula = form)
Coefficients:
(Intercept) x

0.46290 -0.06904

Besides the pleasant syntax, the formula object also offers a very efficient inter- 530

face with the user to describe the model. This is confirmed by the fact that, unlike 531

for plots, there is no other way of describing the relationship between the variables 532

in the model. You might think that the syntax lm(y,x) could have been used. But 533

then how would you write as a list of input arguments the formula y�(x+z)�t , 534

which is perfectly valid (see Chap. 15)? 535

For operations on formulae, you can use the function update() which modifies 536

a formula, using another one. 537

> update(y�x,.�.+z) # Change y�x into y�x+z.
y � x + z
> form <- y�x # The same procedure with a saved model.
> form2 <- update(form,.�.+z)
> form2
y � x + z
> update(form2,.�.-x) # You can also delete a variable.
y � z

These examples show the syntax of the function update(). The first formal 538

argument is the formula you wish to modify; the second formal argument gives 539

the operations to perform on the formula, using a specific syntax. All that remains 540

to be done is to analyse the syntax of the second formula. Any dot “�” before the 541

tilde character “�” is replaced with the left expression of the initial formula (before 542

the tilde). Similarly, any dot “�” after the tilde is replaced with the right expression 543

of the initial formula (after the tilde). 544

8.4.2.3 The R Environment 545

The notion of environment is necessary in any programming language. It can be seen 546

as a storage space of R objects. When you open your R session, a first environment 547

.GlobalEnv is created by R. It is called the workspace and all objects manipulated 548

with the command line during this session are stored there. Although we only wish 549

to give an overview of this concept, it is worth mentioning that the notion of func- 550

tion depends intrinsically on the notion of environment. Here is a glimpse of this 551

fact. When you create a new object in the body of a function, R takes care of declar- 552

ing it internally in an environment specific to this function, to store the contents of 553

the object. The reason for this is that if the object has the same name as an object 554

of the environment .GlobalEnv, this last object will not be overwritten with the 555

value defined in the body of the function. To better understand what an environment 556

is, note that the value of an object defined in the environment .GlobalEnv can be 557

UNCORRECTED
PROOF

8.4 � Going Further in R Programming 229

accessed in the body of the function. However, its value cannot be modified by an 558

affectation with the same object name. The reason why you can access an object 559

which was defined in another environment than the one associated with the function 560

is that a parent environment is specified when declaring a new environment. It is al- 561

lowed that an environment has no parent, as is the case with the initial environment 562

.GlobalEnv. When an object is not directly available in the environment of a func- 563

tion, R searches for the object in the parent environment. If it is still not available, 564

there are two possibilities: either there exists a “grandparent” environment, and the 565

search continues, or there is no such environment and an error is thrown indicating 566

that the object could not be found. This exploration process is repeated recursively 567

until the object is found. Most environment declarations are done internally and in- 568

visibly by R. We shall return to this notion when we give more details on developing 569

functions. A very surprising feature is that an environment is considered as an R ob- 570

ject. A new environment can thus be declared to execute a specific block of code 571

without changing the workspace .GlobalEnv. The function local(), which takes 572

as first argument the code to execute and as second argument the environment for 573

the execution, is very useful to this end: 574

> a <- 12; b <- 13
> space <- new.env() # By default, the parent is the environment

from which new.env is called.
> local(f
+ a <- b+2
+ a
+ g,space)
[1] 15
> a # The value of a has not changed in .GlobalEnv.
[1] 12
> space$a # Value of a in the environment space.
[1] 15

The function’s name is well chosen: the value of a in the workspace .GlobalEnv 575

has been preserved. As stated in the comment, the parent of space (generated by 576

new.env()) is .GlobalEnv, but the parent could have been specified by giving a 577

value to the formal argument parent. Here are two examples of parent declaration: 578

> space2 <- new.env(parent=emptyenv())
> local(a<-b+2,space2) # Error!!!
Error in eval(expr, envir, enclos) : could not find function "<-"
> space2$a # Unsurprisingly, the object a does not exist!
NULL

The environment space2 is useless, since its parent environment is an empty 579

environment (i.e. no parent; declared with the function emptyenv()). The execu- 580

tion error in the local code is because even the affectation function <- cannot be 581

accessed: the empty environment knows absolutely nothing about R; in particular, 582

it does not know the basic functions. The function globalenv() returns the global 583

environment .GlobalEnvwhich is always first in the access list of R environments. 584

UNCORRECTED
PROOF

230 8 Programming in R

> space3 <- new.env(parent=parent.env(globalenv()))
> local(a<-b+2,space3) # Error, because .GlobalEnv cannot be

accessed!
Error in eval(expr, envir, enclos) : object ’b’ not found
> local(a<-15,space3)
> a
[1] 12
> space3$a
[1] 15

Environments are rather convenient-they are used like a list. 585

> space3$b <- b-1
> b
[1] 13
> space3$b
[1] 12

For further details, we refer the reader to the online help, which is rather com- 586

plete, but aimed at advanced users. 587

SECTION 8.5

� Interfacing R and C/C++ or Fortran
588

You may be wondering why you should consider writing parts of your code in C/C++ 589

or Fortran. There are several reasons, such as: 590

� To use from R a pre-existing routine, formerly coded in C/C++ or Fortran 591

� To speed up the runtime of your R code 592

� To use the graphical capabilities of R or some R functions on numerical output 593

from C/C++ or Fortran code 594

Tip

The last version of R includes a byte compiler which speeds up
some computations. You can also use the R version distributed by the
company Revolution Analytics (http://www.revolutionanalytics.
com). It has been optimized to speed up some computations, for example, by
relying on a multi-core architecture when available.

Warning

Interfacing R and C/C++ or Fortran is much more convenient under Linux
(or MacOS) than under a Microsoft Windows OS for which several necessary
tools lack. Note that the authors of this book use Linux on a daily basis!

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 231

See also

We assume that the reader already has some notions of C/C++ and/or
Fortran programming. If that is not the case, the books [22, 38] for C and
C++, and [9] for Fortranmay be of use.

In this section, we do not claim exhaustivity. We shall only present a few simple 595

examples which illustrate the points made above. Along the way, we shall provide 596

some basics which we hope will allow you to get by on your own afterwards. 597

Warning

Before you start, you need to install C/C++ and Fortran compilers,
since Microsoft Windows does not have any by default. The free software
Rtools, containing several tools from the Linux world, has been created to
this end. You can download it from http://cran.r-project.org/bin/
windows/Rtools. Choose Full installation to build 32 or 64

bit R 2.14.2+ if you have a 64 bit processor. Tick the appropriate box
when installing Rtools, so that the variable PATH is correctly configured.
You also need to change the system environment variable Path so that it
contains the path to the R installation folder (one way to find the path is
to right-click on the R icon of the desktop, then choose properties). This
will allow you to call R from an MS-DOS command window, as we shall
mention later on. To do this, right-click on the Windows Desktop, select
New/Shortcut, then enter the following instruction in the window that opens:
control.exe sysdm.cpl,System,3

Once this shortcut has been created on the desktop, double-click on it,
and in the window that opens, click on Environment Variables...
Change the value on the system variable Path to add at the beginning
(using ; as separator) the path to the folder containing the R executable
(which should look like C:\Program Files\R\R-3.1.0\bin\i386

or C:\Program Files\R\R-3.1.0\bin\x64) and the path to the
folders of Rtools (which should look like C:\Rtools\bin and
C:\Rtools\gcc-4.6.3\bin), if they are not already present.

8.5.1 Creating and Running a C/C++ or Fortran Function 598

The next example shows how to speed up a program by using C/C++ or Fortran. 599

The R function combn() is able to handle all combinations of a given number of 600

elements taken from a given vector. For example, this instruction generates all com- 601

binations of size 3 from the vector 1:5. 602

UNCORRECTED
PROOF

232 8 Programming in R

> combn(5,3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5

If we attempt to get all choose(n,m) combinations (e.g., 1,313,400 combina- 603

tions if n D 200 and m D 3) from a vector of larger size n, the computation time 604

can increase drastically. 605

> system.time(x <- combn(200,3))
user system elapsed

14.959 0.227 15.188

The command system.time() shows that the above computation takes several 606

seconds on the computer used to write this book (if your computer is faster, take a 607

value greater than 200). 608

609

Tip

The function permn() of package combinat can be used to generate all
permutations of the elements of a vector.

A simplified version of the original R function combn() is given below: 610

> combnR <- function(n,m) f
+ a <- 1:m ; e <- 0 ; h <- m
+ combmat <- matrix(0,nrow=m,ncol=choose(n,m))
+ combmat[,1] <- 1:m
+ i <- 2
+ nmmp1 <- n - m + 1
+ mp1 <- m + 1
+ while (a[1] != nmmp1) f
+ if (e<n-h) f
+ h <- 1 ; e <- a[m] ; a[m-h+1] <- e + 1
+ combmat[,i] <- a
+ i <- i + 1
+ g else f
+ h <- h + 1 ; e <- a[mp1-h]
+ a[(m-h+1):m] <- e + 1:h
+ combmat[,i] <- a
+ i <- i + 1
+ gg
+ return(combmat)
+ g

We now propose two functions coded in C/C++, and another two coded in 611

Fortran, to make the same computation in much shorter time. 612

613

614

� Creating the C/C++ function 615

616

C++ code for function combnC, downloadable from http://biostatisticien. 617

eu/springeR/combn.cpp: 618

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 233

619
1 # i n c l u d e <math . h> 620

2 e x t e r n "C" f 621

3 vo i d combnC (i n t � combmat , i n t � n , i n t �m) f 622

4 i n t i , j , e , h , nmmp1 , mp1 ; 623

5 i n t � a ; 624

6 a=new i n t [m[0]] ; 625

7 f o r (i =1; i<=m[0] ; i= i +1) a [i �1]= i ; 626

8 e=0; 627

9 h=m[0] ; 628

10 f o r (i =1; i <=�(m+0) ; i= i +1) combmat [i �1]= i ; 629

11 i =2; 630

12 nmmp1=n [0] � m[0] + 1 ; 631

13 mp1=m[0] + 1 ; 632

14 w hi l e (a [0] ! = nmmp1) f 633

15 i f (e < n [0] � h) f 634

16 h=1; 635

17 e=a [m[0] �1] ; 636

18 a [m[0] � h]= e + 1 ; 637

19 f o r (j =1; j<=m[0] ; j= j +1) combmat [(i �1)�m[0]+ j �1]=a [j �1]; 638

20 i= i +1; 639

21 g e l s e f 640

22 h=h + 1 ; 641

23 e=a [mp1 � h �1]; 642

24 f o r (j =1; j <=h ; j= j +1) a [m[0] � h + j �1]=e + j ; 643

25 f o r (j =1; j<=m[0] ; j= j +1) combmat [(i �1)�m[0]+ j �1]=a [j �1]; 644

26 i= i + 1 ; g g 645

27 d e l e t e [] a ; 646

28 gg 647648

Code for the main function, downloadable from http://biostatisticien. 649

eu/springeR/main.cpp: 650
651

1 # i n c l u d e < i o s t r e a m> 652

2 u s i n g namespace s t d ; 653

3 e x t e r n "C" f 654

4 i n t main () f 655

5 vo i d combnC (i n t � combmat , i n t �n , i n t �m) ; 656

6 i n t � n , �m, � combmat , j ; 657

7 doub l e Cnm ; 658

8 n=new i n t [1] ; 659

9 m=new i n t [1] ; 660

10 n [0]=5 ; 661

11 m[0]=3 ; 662

12 Cnm=10; 663

13 combmat=new i n t [(i n t)Cnm�m[0]] ; 664

14 combnC (combmat , n ,m) ; 665

15 f o r (j =1; j <=Cnm�m[0] ; j ++) c o u t << combmat [j �1] << " " ; 666

16 gg 667668

Note that all indices start at zero in C/C++, unlike R where they start at 1. 669

UNCORRECTED
PROOF

234 8 Programming in R

� Creating the Fortran function 670

671

Fortran code for the subroutine combnF, downloadable from http:// 672

biostatisticien.eu/springeR/combn.f90: 673

674
1 SUBROUTINE combnF (combmat , n ,m) 675

2 676

3 i n t e g e r , i n t e n t (i n) : : n ,m 677

4 i n t e g e r : : i , j , e , h , nmmp1 , mp1 678

5 i n t e g e r , d im en s io n (m) : : a 679

6 i n t e g e r , d im en s io n (�) , i n t e n t (o u t) : : combmat 680

7 681

8 do i =1 ,m 682

9 a (i)= i 683

10 end do 684

11 e=0 685

12 h=m 686

13 do i =1 ,m 687

14 combmat (i)= i 688

15 end do 689

16 i=2 690

17 nmmp1=n�m+1 691

18 mp1=m+1 692

19 do w h i l e (a (1) . ne . nmmp1) 693

20 i f (e < n�h) t h e n 694

21 h=1 695

22 e=a (m) 696

23 a (m�h+1)=e+1 697

24 do j =1 ,m 698

25 combmat ((i �1)�m+ j)= a (j) 699

26 end do 700

27 i= i+1 701

28 e l s e 702

29 h=h+1 703

30 e=a (mp1�h) 704

31 do 4 0 j =1 ,h 705

32 a (m�h+ j)= e+ j 706

33 4 0 c o n t i n u e 707

34 do j =1 ,m 708

35 combmat ((i �1)�m+ j)= a (j) 709

36 end do 710

37 i= i+1 711

38 e n d i f 712

39 enddo 713

40 END SUBROUTINE combnF 714
715

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 235

Code for the main function, downloadable from http://biostatisticien. 716

eu/springeR/main.f90: 717

718
1 PROGRAM main 719

2 i n t e g e r : : n ,m, Cnm, j , k 720

3 i n t e g e r , a l l o c a t a b l e , d im en s io n (:) : : combmat 721

4 n=5 722

5 m=3 723

6 Cnm=10 724

7 k=Cnm�m 725

8 a l l o c a t e (combmat (k)) 726

9 CALL combnF (combmat , n ,m) 727

10 w r i t e (� , �) (combmat (j) , j =1 ,k) 728

11 d e a l l o c a t e (combmat) 729

12 end PROGRAM main 730
731

732

� Compiling and running the C/C++ or Fortran function 733

734

In order to use the C++ or Fortran code given above, it needs to be compiled, i.e. 735

transformed into an executable file. To do this, simply open an MS-DOS terminal 736

window, for example, from the Windows menu Start/Run (or with the keyboard 737

combination [WINDOWS+R]) and type the instruction cmd followed by ENTER. In this 738

black window, type the two instructions below. 739

Warning

You may need to move to the directory where your files were saved, using
the MS-DOS command cd (for change directory). For example, if you created
your files on the Windows Desktop, use

cd Desktop

Note that under MS-DOS, the command dir is used to list the contents of the
current directory.

:: To compile C/C++ code: 740

g++ -o mycombn.exe combn.cpp main.cpp 741

:: To compile Fortran code: 742

gfortran -o mycombn.exe combn.f90 main.f90 743

:: To run the function: 744

mycombn.exe 745

The first instruction compiles our C++ or Fortran code to produce the executable 746

file mycombn.exe. The second instruction launches this executable file and dis- 747

plays, though with no formatting, the result of the computation. 748

UNCORRECTED
PROOF

236 8 Programming in R

Tip

The function system() is used to execute a DOS command outside of R. For
example, in R, type:

> system("mycombn.exe")
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5 >

Note that you must of course first change the current R directory, using func-
tion setwd(), for example, to change to the directory containing the file my-
combn.exe.

749

Tip

The compilation flag -Wall is used to display all compilation warnings or
errors (if there are any!):

g++ -o mycombn.exe combn.cpp main.cpp -Wall

We shall now produce the
�

200
3

� D 1; 313; 400 sub-vectors made of all possible 750

combinations of three elements in vector 1:200. For the C/C++ version, modify 751

lines 11, 13 and 16 of the code of function main given p. 233. These lines become 752

n[0]=200; 753

Cnm=1313400; 754

// for (j=1;j<=Cnmm[0];j++) cout << combmat[j-1] << " "; 755

For the Fortran version, modify lines 4, 6 and 10 of the code of function main 756

given p. 235. These lines become 757

n=200 758

Cnm=1313400 759

!write(*,*) (combmat(j) ,j=1,k) 760

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 237

We commented out the last line (using // in C/C++ and ! in Fortran) so that a call 761

of mycombn.exe no longer displays the (now very large) result of the computation, 762

which would take a lot of time. But the calculation is made. We are thus coherent 763

with the previous computation done in R, for which the result was not displayed but 764

stored in variable x. After saving your changes, recompile and run your code: 765

:: To compile C/C++ code: 766

g++ -o mycombn.exe combn.cpp main.cpp 767

:: To compile Fortran code: 768

gfortran -o mycombn.exe combn.f90 main.f90 769

:: Execute the function: 770

mycombn.exe 771

You can see that the calculation (without displaying the result) is done very quickly. 772

8.5.2 Calling C/C++ (or Fortran) from R 773

We shall now see how to call the C++ code from file combn.cpp (or rather a com- 774

piled version of this code) directly from R, without using a main function. To this 775

end, we create an R wrapper containing a call of the C++ function. 776

Note

R can only call C/C++ or Fortran functions which do not return any output.
All C/C++ functions must thus be of type void and all Fortran routines must
be subroutines. The results will go in the arguments of the calling function.

Download the file http://biostatisticien.eu/springeR/combn.R, 777

which includes the code given below: 778

779
1 combnRC <� f u n c t i o n (n ,m) f 780

2 combmat <� m a t r i x (0 , nrow=m, n c o l=c h o o se (n ,m)) 781

3 l i b <� p a s t e ("combn" , . P l a t f o r m $ d y n l i b . ex t , sep="") 782

4 dyn . l o a d (l i b) 783

5 o u t <� .C("combnC" , r e s=as . i n t e g e r (combmat) , 784

6 as . i n t e g e r (n) , a s . i n t e g e r (m)) 785

7 combmat <� m a t r i x (o u t $ r e s , nrow=m, byrow=F) 786

8 dyn . u n lo a d (l i b) 787

9 r e t u r n (combmat) 788

10 g 789
790

UNCORRECTED
PROOF

238 8 Programming in R

Note

To call the Fortran code, replace line 5 by

out <- .Fortran("combnF",res=as.integer(combmat),

The functions dyn.load() and dyn.unload() allow respectively to load and 791

unload from R’s memory the resources from a DLL (dynamic link library) file. A 792

DLL includes functions which can be called during the execution of a program, 793

without being included in its executable. Here, it is the file combn.dll (which in- 794

cludes only one function), which will be created further on. 795

796

The functions .C() and .Fortran() (which output a list) are used to send 797

values from R to a C/C++ or Fortran function, respectively. Use the instructions 798

as.integer(), as.double() or as.character() in R to declare objects made 799

of integer values, decimal (numeric) values or character strings, so that they are 800

“received” correctly by the arguments of the C/C++ or Fortran function. 801

802

For a C/C++ function, all arguments must be pointers, for example, integer 803

pointers (int *), real pointers (double *) or character pointer pointers (char **). 804

Table 8.1 gives the equivalent types in R, C/C++ and Fortran. 805

Table 8.1: Conventions on argument types. Type ?.Fortran for further detail

R C/C++ Fortran

integer int * INTEGER

numeric double * DOUBLE PRECISION

numeric float * REAL

complex Rcomplex * DOUBLE COMPLEX
logical int * integer

character char ** CHARACTER*255
list SEXP * not allowed
other type SEXP not allowed

Warning

Unlike R, where it is very easy to get the length of vector x with the in-
struction length(x), in C/C++ it is not possible to know the length of x. It
can sometimes be useful to give to the function .C() both the vector x and its
length, for example, as follows for some hypothetical function functionC:

x <- c(1.2,0.7,3,2,4,1,0.9)

.C("functionC",as.double(x),as.integer(length(x)))

The arguments of the C/C++ function functionC are double *x and int *n.
The same remark applies to Fortran functions.

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 239

Note

The C/C++ function combnC returns void: it does not have any direct out-
put. However, the value of its arguments, which are pointers, can be modified
during execution. It is then possible to access directly (thanks to their address)
to the value of these pointers. This is how R works, using the function .C() (in
a transparent way for the user).
You may have noted at line 5 of the code of function combnRC() above
that we used res= when calling function .C(). This allows us to use
out$res directly, instead of out[[1]]. You can use another name than res,
and for any argument of function .C(). For example, we could have used
val=as.integer(m), which we did not do because that value was not modi-
fied by combnC and is thus already known (as m). A similar remark applies to
Fortran functions.

We shall now create the file combn.dll, which will be called by R. To this end, 806

type the following instructions in an MS-DOS window: 807

:: In C/C++: 808

g++ -c combn.cpp -o combn.o 809

g++ -shared -o combn.dll combn.o 810

:: In Fortran: 811

gfortran -c combn.f90 -o combn.o 812

g++ -shared -o combn.dll combn.o 813

Tip

Equivalently (or almost equivalently, since optimization arguments could be
used by the compiler, which might by the way hinder debugging), this dynam-
ical library could be created (after deleting if necessary the files combn.o and
combn.dll) with one instruction:

R CMD SHLIB combn.cpp -o combn.dll

The first instruction creates the object file combn.o, which contains the machine 814

code for the function included in file combn.cpp. The second instruction creates the 815

dynamic library combn.dll. At this step, the compiler informs us of any errors to 816

correct in the program (with the corresponding line number). 817

UNCORRECTED
PROOF

240 8 Programming in R

Tip

Note that it is possible to include several object files in the same library,
which will then contain several functions. For example, if we had a file
choose.o containing the machine code for a function which calculates bino-
mial coefficients, we could include both functions in a DLL as follows:

g++ -shared -o combn.dll combn.o choose.o

Linux

Under Linux, DLL files usually have a .so extension (for shared object).
You should thus replace all occurrences of extension .dll by extension .so.

Mac

Under MacOS, DLL files usually have a .dylib extension (for dynamic
library). You should thus replace all occurrences of extension .dll by exten-
sion .dylib. Also note that under MacOS, you must replace g++ -shared
with g++ -dynamic.

In R, after changing to the correct directory, we can now execute the following 818

instructions: 819

> combn(5,3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5
> source("combn.R")
> combnRC(5,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5
> system.time(x <- combn(200,3))

user system elapsed
14.803 0.229 15.035
> system.time(x <- combnRC(200,3))

user system elapsed
0.158 0.023 0.181

There is an important speed-up, thanks to this new R function using code written 820

in C/C++. 821

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 241

822

Do it yourself Ï
823

Code in R alone, and then in hybrid R-C/C++ (or R-Fortran), the functions 824

ar1simR() and ar1simRC()-ar1simC (or ar1simRF()-ar1simF). These 825

functions take three input arguments: n 2 N, � 2 .�1; 1/ and M 2 N. They 826

do the following computations. 827

828

For m D 1; : : : ;M : 829

(a) Simulate random vector ε D .ε1; : : : ; εn/
T with distribution 830

Nn.0IIn/. 831

(b) Create vector x D .x1; : : : ; xn/
T, with x1 D �1, and such that for all 832

t D 2; : : : ; n, we have xt D �xt�1 C εt . 833

(c) Calculate the conditional least squares estimator O�m of �: 834

O�m D
Pn

tD2 xt�1xtPn
tD2 x

2
t�1

: 835

The functions you create should output the value O� D 1
M

PM
mD1

O�m � �, 836

thus allowing a numerical evaluation of the bias of estimator O� of �. 837

838

Compare the speed of execution of the pure R version with the version call- 839

ing C/C++ (or Fortran) code. To this end, plot the values .M; timeM / for 840

M D 1;000; 2;000; : : : ; 100;000. Take n D 1;000 and � D 0:75. 841

842

Note: The function arima.sim() performs parts (a) and (b) above, and 843

function arima() performs part (c). Do not use these two pre-existing func- 844

tions for this exercise: they are very fast because they are coded in C, but are 845

not limited to the previous computations. 846

847
848

Tip

To ease code development, a good editor is always useful. An editor should
at least include indentation and syntactical colouring. You may wish to use the
following free software:

� An R code editor such as RStudio, Tinn-R or Emacs
� A source code editor for C/C++ and Fortran such as Emacs or
Code::Blocks (available at http://www.codeblocks.org)

UNCORRECTED
PROOF

242 8 Programming in R

Tip

The package rbenchmark can be used to easily calculate the expected gain
in computation time by using an R-C/C++ or R-Fortran function rather than
a pure R function. For example, try to verify the results we got in the previous
practical using the following code:

n <- 1000

phi <- 0.75

M <- 2000

dyn.load("ar1sim.dll")

benchmark(Rcode=ar1simR(n,phi,M),

Ccode=.C("ar1simC",as.integer(n),phi,

as.integer(M),res=0.0)$res,

replications=1000)

Tip

Fortran and R store matrices (tables) in the same way: the rows of a
given column are stored sequentially in memory. In C/C++, the opposite holds;
columns of a given line are stored sequentially. Be careful when sending a
matrix from R to C/C++. For example, the element with index [i,j] in an
R matrix corresponds to the element with index [(j-1)*number-of-rows +
(i-1)] in C/C++ (in C/C++, indices start at 0).

8.5.3 Calling External C/C++ or Fortran Libraries 849

It is possible to use a function from an external library, thanks to the R functions 850

.C() (for C/C++ libraries) and .Fortran() (for Fortran libraries). 851

Tip

Here is an amusing application of this approach, which locks the Windows
session:

Select file C:/windows/system32/user32.dll:

dyn.load(file.choose())

.C("LockWorkStation")

It is also possible to call an external library directly from your C/C++ or Fortran 852

code. Here are some scientific libraries which we find interesting: 853

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 243

� The R API (application programming interface) 854

� The C++ library newmat 855

� The Fortran libraries BLAS and LAPACK 856

See also

Other libraries exist; some are free of charge, or even open-source, such as:

� In C/C++:

– http://www.gnu.org/software/gsl
– http://www.math.uiowa.edu/˜dstewart/meschach
– http://www.nrbook.com/a/bookcpdf.php

� In Fortran:

– http://calgo.acm.org
– http://www.nrbook.com/a/bookfpdf.php
– http://www.nrbook.com/a/bookf90pdf.php
– http://math-atlas.sourceforge.net

Others are not free:

� In C/C++:

– http://www.nag.co.uk/numeric/CL/CLdescription.asp
– http://www.vni.com/products/imsl/c/imslc.php

� In Fortran:

– http://www.nag.co.uk/numeric/RunderWindows.asp
– http://www.nag.co.uk/numeric/fl/FLdescription.asp
– http://www.nag.co.uk/numeric/fn/FNdescription.asp
– http://www.vni.com/products/imsl/fortran/overview.php

8.5.3.1 The R API 857

The R API is a library created by the R developers. It can be used from a C/C++ 858

program without even using R (it is then called standalone R API). It can also be 859

used in C/C++ code which will itself be called from R, as introduced in the previous 860

section. This allows the use of existing routines without having to rewrite them. 861

To use this library, you must include in your C/C++ source code the two header 862

files R.h and Rmath.h, which are necessary to declare or define some mathematical 863

functions and constants. 864

UNCORRECTED
PROOF

244 8 Programming in R

See also

The documentation for this library, which includes the list of functions and
constants contained in it, is available at http://cran.r-project.org/doc/
manuals/R-exts.html#The-R-API.
You may also find interesting to consult the contents of the directory nmath/
in the R sources; it is available at http://svn.r-project.org/R/trunk/
src/nmath.

We present below C/C++ code available at http://biostatisticien.eu/ 865

springeR/integ.cpp which allows to compute the integral 866

Z �

�1

˚.t C �2/dt; 867

where �1 and �2 are realizations of two independent random variables (respectively, 868

normal and uniform) and where ˚.�/ is the cumulative distribution function of the 869

N .0; 1/ distribution. The only point of this example is to illustrate the use of the 870

R API to simulate random variables, calculate a probability and perform numerical 871

integration. 872

873
1 # i n c l u d e <R . h> 874

2 # i n c l u d e <Rmath . h> 875

3 876

4 e x t e r n "C" f 877

5 878

6 t y p e d e f v o id i n t e g r f n (d o u b le �x , i n t n , v o id � ex) ; 879

7 v o id f (d o u b le � t , i n t n , v o id � ex) ; 880

8 v o id t e s t i n t e g r a l (d o u b le � r e s) f 881

9 882

10 / / R API n u m e r i c a l i n t e g r a t i o n f u n c t i o n 883

11 v o id Rdqags (i n t e g r f n f , v o id � ex , d o u b le � a , 884

12 d o u b le � b , d o u b le � e p sab s , 885

13 d o u b le � e p s r e l , d o u b le � r e s u l t , 886

14 d o u b le � a b s e r r , i n t � neva l , 887

15 i n t � i e r , i n t � l i m i t , i n t � lenw , 888

16 i n t � l a s t , i n t � iwork , d o u b le �work) ; 889

17 890

18 GetRNGstate () ; / / Read t h e R g e n e r a t o r seed 891

19 892

20 d o u b le � a , � b , � e p sab s , � e p s r e l , � r e s u l t , 893

21 � ex , � a b s e r r , � work ; 894

22 i n t � l a s t , � l i m i t , � lenw , � i e r , � neva l , � iwork ; 895

23 896

24 ex = new d o u b le [1] ; a = new d o u b le [1] ; 897

25 b = new d o u b le [1] ; e p s a b s = new d o u b le [1] ; 898

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 245

26 e p s r e l = new d o u b le [1] ; r e s u l t = new d o u b le [1] ; 899

27 a b s e r r = new d o u b le [1] ; n e v a l = new i n t [1] ; 900

28 i e r = new i n t [1] ; l i m i t = new i n t [1] ; 901

29 lenw = new i n t [1] ; l a s t = new i n t [1] ; 902

30 l i m i t [0] = 1 0 0 ; 903

31 lenw [0] = 4 � l i m i t [0] ; 904

32 iwork = new i n t [l i m i t [0]] ; 905

33 work = new d o u b le [lenw [0]] ; 906

34 907

35 a [0] = rnorm (0 . 0 , 1 . 0) ; / / eps1 from N(0 , 1) 908

36 b [0] = M PI ; / / The c o n s t a n t n p i (3 . 1 4 1 5 9 3 . . .) 909

37 ex [0] = r u n i f (0 . 0 , 1 . 0) ; / / eps2 from Unif (0 , 1) 910

38 911

39 / / C a l c u l a t e t h e i n t e g r a l 912

40 Rdqags (f , ex , a , b , ep sab s , e p s r e l , 913

41 r e s u l t , a b s e r r , neva l , i e r , 914

42 l i m i t , lenw , l a s t , 915

43 iwork , work) ; 916

44 917

45 / / The r e s u l t i s s t o r e d i n r e s [0] 918

46 r e s [0] = r e s u l t [0] ; 919

47 920

48 PutRNGsta te () ; / / Wri te t h e g e n e r a t o r seed 921

49 922

50 / / Free up some memory 923

51 d e l e t e [] ex , a , b , ep sab s , e p s r e l , r e s u l t , a b s e r r , 924

52 n ev a l , i e r , l i m i t , lenw , l a s t , iwork , work ; 925

53 g 926

54 927

55 / / Def in e t h e f u n c t i o n t o i n t e g r a t e 928

56 v o id f (d o u b le � t , i n t n , v o id � ex) f 929

57 i n t i ; 930

58 d o u b le eps2 ; 931

59 eps2 = ((d o u b le �) ex) [0] ; 932

60 f o r (i =0; i<n ; i ++) f 933

61 t [i] = pnorm (t [i]+ eps2 , 0 . 0 , 1 . 0 , 1 , 0) ; g 934

62 g 935

63 936

64 g 937
938

The instructions to compile this function in order to get a DLL file are 939

g++ -c integ.cpp -o integ.o -I"C:\Program Files\R\R-3.1.0 940

\include" 941

g++ -shared -o integ.dll integ.o ˆ 942

-L"C:\Program Files\R\R-3.1.0\bin\i386" -lR 943

UNCORRECTED
PROOF

246 8 Programming in R

Warning

Note that we had to indicate the paths to the folders containing the files
R.h, Rmath.h and R.dll. Modify these as needed depending on your system
configuration. In MS-DOS, the symbol ˆ indicates an incomplete line.

Linux

g++ -c integ.cpp -o integ.o -I"/usr/lib/R/include" -fPIC

g++ -shared -o integ.so integ.o -I"/usr/lib/R/include" \

-L"/usr/lib" -lR

Now, to perform the calculation in R, use the following instructions: 944

> dyn.load(paste("integ",.Platform$dynlib.ext,sep=""))
> # i.e. dyn.load("integ.dll") under Windows.
> .C("testintegral",val=0.0)$val
[1] 3.707762

Of course, the result of this computation varies, depending on the realizations of 945

�1 and �2. 946

8.5.3.2 The newmat Library 947

The newmat library is used to manipulate various types of matrices and to 948

perform classical operations such as multiplication, transposition, inversion, eigen- 949

value computation and decompositions. 950

See also

The complete documentation for this library is available at http://www.
robertnz.net/nm11.htm.

The code below, available at http://biostatisticien.eu/springeR/inv. 951

cpp, is C/C++ code using this library to invert a matrix and can be called from R. 952

953
1 # d e f i n e WANT STREAM 954

2 # d e f i n e WANT MATH 955

3 # i n c l u d e "newmatap . h" 956

4 # i n c l u d e "newmatio . h" 957

5 # i f d e f u se namesp ace 958

6 u s i n g namespace NEWMAT; 959

7 # e n d i f 960

8 e x t e r n "C" f 961

9 v o id invC (d o u b le � v a l u e s , i n t � nrow) f 962

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 247

10 i n t i , j ; 963

11 Mat r ix M(nrow [0] , nrow [0]) ; 964

12 M << v a l u e s ; 965

13 M <<M. i () ; / / C a l c u l de l ’ i n v e r s e de M 966

14 f o r (i =1; i<=nrow [0] ; i ++) f 967

15 f o r (j =1; j<=nrow [0] ; j ++) f 968

16 v a l u e s [nrow [0]� (i �1)+ j �1] = M(i , j) ; 969

17 g 970

18 g 971

19 M. R e l e a s e () ; 972

20 r e t u r n ; 973

21 g 974

22 g 975
976

Tip

Download file http://www.robertnz.net/ftp/newmat11.zip and un-
zip it in C:/newmat. Then type the following instructions in an MS-DOS win-
dow:

cd n
cd newmat

g++ -O2 -c *.cpp
ar cr newmat.a *.o
ranlib newmat.a

cp newmat.a newmat.dll

After a few minutes, the libraries newmat.a and newmat.dll are created in
folder C:\newmat.

You now need to create the library inv.dll (or inv.so under Linux) using the 977

following instructions: 978

cd folder containing file inv.cpp 979

g++ -IC:\newmat -o inv.o -c inv.cpp 980

R CMD SHLIB inv.cpp -IC:\newmat C:/newmat/newmat.a 981

Linux

g++ -I/usr/include/R -I/usr/local/include -Inewmat -fpic \

-c inv.cpp -o inv.o

R CMD SHLIB inv.cpp -Inewmat newmat/newmat.a

You can then use the C/C++ above from R as follows. First save the following 982

code in a file called inv.R: 983

UNCORRECTED
PROOF

248 8 Programming in R

> inv <- function(M) f
+ n <- nrow(M)
+ return(matrix(.C("invC",Minv=as.vector(M),n)$Minv,
+ nrow=n,ncol=n))g

Then execute the instructions: 984

> dyn.load(paste("inv",.Platform$dynlib.ext,sep=""))
> A <- matrix(rnorm(9),nrow=3)
> solve(A) # The R function solve() inverts a matrix.

[,1] [,2] [,3]
[1,] -0.09893572 0.04676191 1.155500
[2,] -0.47035376 1.10728717 -2.979609
[3,] 0.03415044 -1.07683806 1.456918
> inv(A)

[,1] [,2] [,3]
[1,] -0.09893572 0.04676191 1.155500
[2,] -0.47035376 1.10728717 -2.979609
[3,] 0.03415044 -1.07683806 1.456918

The two functions solve() and inv() thus give the same result for matrix 985

inversion. As you can see, the speed-up for this operation is substantial. 986

> benchmark(Rcode=solve(A),Ccode=inv(A),replications=10000)
test replications elapsed relative user.self sys.self

2 Ccode 10000 0.255 1.000000 0.256 0.000
1 Rcode 10000 1.378 5.403922 1.351 0.025

user.child sys.child
2 0 0
1 0 0

8.5.3.3 The BLAS and LAPACK Packages 987

The BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACK- 988

age) packages are Fortran packages which perform many matrix operations. We 989

shall see how to use them on a simple example. 990

991

First download the archiver software 7-zip available at http://www.7-zip. 992

org/download.html. Use this software (twice) to unzip (in two steps) the file 993

http://www.netlib.org/lapack/lapack.tgz. All files and subfolders (BLAS, 994

CMAKE, etc.) should be placed directly in a folder called C:\lapack. For example, 995

this folder will contain at its root a file called make.inc.example, which you must 996

rename to make.inc after changing the line SHELL = /bin/sh to SHELL = sh. 997

Then type the following instructions in an MS-DOS window: 998

cd C:\lapack 999

make lapacklib blaslib 1000

After several minutes, the static packages librefblas.a and liblapack.a are 1001

created. 1002

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 249

See also

The documentation for these packages can be read at http://www.
netlib.org/lapack/lug. It is also useful to read the source code of all BLAS
and LAPACK routines you wish to use, as they contain a detailed description of
the arguments the routines take.

Here is the Fortran code, also available at http://biostatisticien.eu/ 1003

springeR/inv.f90, for a subroutine which computes the inverse of a matrix. It 1004

uses the subroutines external DGETRF and DGETRI from the Lapack package. 1005

1006
1 ! R e t u r n s t h e i n v e r s e o f a m a t r i x c a l c u l a t e d by f i n d i n g 1007

2 ! t h e LU d e c o m p o s i t i o n . Depends on LAPACK . 1008

3 s u b r o u t i n e invF (A, Ainv ,m) 1009

4 d o u b le p r e c i s i o n , d im e n s io n (m,m) , i n t e n t (i n) : : A 1010

5 d o u b le p r e c i s i o n , d im e n s io n (s i z e (A, 1) , s i z e (A, 2)) , & 1011

6 i n t e n t (i n o u t) : : Ainv 1012

7 1013

8 ! work a r r a y f o r LAPACK 1014

9 d o u b le p r e c i s i o n , d im e n s io n (s i z e (A , 1)) : : work 1015

10 i n t e g e r , d im en s io n (s i z e (A , 1)) : : i p i v ! p i v o t i n d i c e s 1016

11 i n t e g e r : : n , i n f o , m 1017

12 1018

13 ! E x t e r n a l p r o c e d u r e s d e f i n e d i n LAPACK 1019

14 e x t e r n a l DGETRF 1020

15 e x t e r n a l DGETRI 1021

16 1022

17 ! S t o r e A i n Ainv t o p r e v e n t i t f rom 1023

18 ! b e i n g o v e r w r i t t e n by LAPACK 1024

19 Ainv = A 1025

20 n = s i z e (A, 1) 1026

21 1027

22 ! DGETRF computes an LU f a c t o r i z a t i o n o f 1028

23 ! a g e n e r a l M�by�N m a t r i x A u s i n g p a r t i a l 1029

24 ! p i v o t i n g wi th row i n t e r c h a n g e s . 1030

25 c a l l DGETRF(n , n , Ainv , n , i p i v , i n f o) 1031

26 1032

27 i f (i n f o / = 0) t h e n 1033

28 s t o p ’ Mat r ix i s n u m e r i c a l l y s i n g u l a r ! ’ 1034

29 end i f 1035

30 1036

31 ! DGETRI computes t h e i n v e r s e o f a m a t r i x u s i n g 1037

32 ! t h e LU f a c t o r i z a t i o n computed by DGETRF. 1038

33 c a l l DGETRI (n , Ainv , n , i p i v , work , n , i n f o) 1039

34 1040

UNCORRECTED
PROOF

250 8 Programming in R

35 i f (i n f o / = 0) t h e n 1041

36 s t o p ’ Mat r ix i n v e r s i o n f a i l e d ! ’ 1042

37 end i f 1043

38 end s u b r o u t i n e invF 1044
1045

To compile this code, execute the following instructions from an MS-DOS 1046

window: 1047

cd %HOMEPATH%/Desktop # To be changed to suit your needs. 1048

gfortran -c inv.f90 -o inv.o -I"C:/lapack" 1049

gfortran -shared -o inv.dll inv.o -I"C:/lapack" ˆ 1050

C:/lapack/liblapack.a C:/lapack/librefblas.a 1051

Linux

Under Linux, use the following instructions:

gfortran -c inv.f90 -o inv.o -fPIC

gfortran -shared -o inv.so inv.o /usr/lib64/liblapack.so.3

After creating the file inv.dll (or inv.so under Linux) with the previous 1052

instructions, you can start R and type the following instructions: 1053

> dyn.load(paste("inv",.Platform$dynlib.ext,sep=""))
> A <- matrix(rnorm(4),nrow=2)
> B <- matrix(0,nrow=2,ncol=2)
> .Fortran("invF",A,res=B,2L)$res

[,1] [,2]
[1,] -1.1812737 1.9822527
[2,] -0.1681507 -0.7224351
> solve(A)

[,1] [,2]
[1,] -1.1812737 1.9822527
[2,] -0.1681507 -0.7224351

8.5.3.4 Mixing C/C++ and Fortran Packages 1054

It is possible to call C/C++ functions from Fortran code, thanks to the instruction 1055

F77_SUB(name). We illustrate this point in the next example, which generates two 1056

independent observations: one from a N .0; 1/ distribution and the other from the 1057

uniform distribution. The Fortran code below uses the C functions GetRNGstate, 1058

PutRNGstate, rnorm and runif from the R API, which we have already used in 1059

Sect. 8.5.3.1. Save it in a file called random.f. 1060

1061
1 SUBROUTINE random (x , y) 1062

2 r e a l �8 normrnd , u n i f r n d , x , y 1063

3 CALL r n d s t a r t () 1064

4 x = normrnd () 1065

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 251

5 y = u n i f r n d () 1066

6 CALL r n d e n d () 1067

7 RETURN 1068

8 END 1069
1070

Then create the file random.c containing 1071

1072
1 # i n c l u d e <R . h> 1073

2 # i n c l u d e <Rmath . h> 1074

3 v o id F77 SUB (r n d s t a r t) (v o id) f GetRNGstate () ; g 1075

4 v o id F77 SUB (r n d e n d) (v o id) f PutRNGsta te () ; g 1076

5 d o u b le F77 SUB (normrnd) (v o id) f r e t u r n rnorm (0 , 1) ; g 1077

6 d o u b le F77 SUB (u n i f r n d) (v o id) f r e t u r n r u n i f (0 , 1) ; g 1078
1079

To create your DLL file, compile using the instructions 1080

gfortran -c random.f -o randomf.o 1081

gcc -c random.c -o randomc.o -I"C:\Program Files\R\R-3.1.0 1082

\include"gfortran -shared randomf.o randomc.o -o random.dll ˆ 1083

-L"C:\Program Files\R\R-3.1.0\bin\i386" -lR 1084

Linux

Under Linux, use

gfortran -c random.f -o randomf.o -fPIC

gcc -c random.c -o randomc.o -I"/usr/lib/R/include" -fPIC

gfortran -shared randomf.o randomc.o -o random.so

You can now call your code from R using the instructions: 1085

> dyn.load(paste("random",.Platform$dynlib.ext,sep=""))
> .Fortran("random", as.double(1), as.double(1))
[[1]]
[1] 1.542474
[[2]]
[1] 0.59143

It is also possible to call Fortran functions from C/C++ code, using the follow- 1086

ing instructions: 1087

F77_NAME(name) to declare a Fortran routine in C 1088

F77_CALL(name) to call a Fortran routine from C 1089

F77_COMDECL(name) to declare a COMMON FORTRAN block in C 1090

F77_COM(name) to access a COMMON FORTRAN block from C 1091

1092

Here is a small example (with Fortran77 for a change). Save the code below in 1093

a file called combnCF.cpp: 1094

UNCORRECTED
PROOF

252 8 Programming in R

1095
1 # i n c l u d e <R . h> 1096

2 # i n c l u d e <Rmath . h> 1097

3 e x t e r n "C" f 1098

4 v o id combnCF(i n t � combmat , i n t � n , i n t �m) f 1099

5 / / C a u t i o n ! No u p p e r c a s e i n t h e name o f t h e s u b r o u t i n e . 1100

6 v o id F77 NAME (combnf) (i n t � combmat , i n t � n , i n t �m) ; 1101

7 F77 CALL (combnf) (combmat , n ,m) ; 1102

8 g 1103

9 g 1104
1105

Then type the following instructions in an MS-DOS command window to create 1106

the package which will be called from R: 1107

g++ -c combnCF.cpp -o combnCF.o -I"C:\Program Files\R 1108

\R-3.1.0\include"gfortran -c combn.f90 -o combn.o 1109

g++ -shared -o combnCF.dll combnCF.o combn.o ˆ 1110

-L"C:\Program Files\R\R-3.1.0\bin\i386" -lR 1111

Linux

Under Linux

g++ -c combnCF.cpp -o combnCF.o-I"/usr/lib/R/include"-fPIC

gfortran -c combn.f90 -o combn.o -fPIC

g++ -shared -o combnCF.so combnCF.o combn.o \

-I"/usr/lib/R/include" -L"/usr/lib" -lR

Now modify the code of function combnRC() given p. 237: 1112

� Change the name of this function to combnRCF(). 1113

� Replace "combn" and "combnC" with "combnCF". 1114

Save this new code in a file called combnCF.R. Then type the following instructions 1115

in the R console: 1116

> source("combnCF.R")
> combnRCF(5,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
[3,] 3 4 5 4 5 5 4 5 5 5

8.5.4 Calling R Code from a C/C++ Program Called by R 1117

We have seen how to call a C/C++ (or Fortran) routine from R. It is also possi- 1118

ble to use a type of pointer called SEXP (for Simple EXPression) and the function 1119

UNCORRECTED
PROOF

8.5 � Interfacing R and C/C++ or Fortran 253

.Call(). In this subsection, we only give a simple example. The reader can use this 1120

as inspiration for more complex examples. 1121

See also

We refer the reader to the website http://cran.r-project.org/doc/
manuals/R-exts.html#Handling-R-objects-in-C.

In the following example, we shall see how to call function pmvt() of package 1122

mvtnorm from C/C++ code, itself called from R. The function pmvt() computes 1123

the probability that a random vector following a multivariate Student distribution 1124

belongs to a specified hyperrectangle in R
n. 1125

1126

Unlike the examples in the previous sections, which used the function .C(), we 1127

shall need the function .Call(). Furthermore, our C/C++ code will have to be a 1128

function (which we call pmvtC in the following) which returns a structure of type 1129

SEXP and which also takes arguments of type SEXP. The code below, available from 1130

http://biostatisticien.eu/springeR/pmvt.cpp, will be transformed into a 1131

DLL file and then called by the function .Call(). 1132

1133
1 # i n c l u d e <R . h> 1134

2 # i n c l u d e <R d e f i n e s . h> 1135

3 # i n c l u d e "Rmath . h" 1136

4 # i n c l u d e <R ex t / Rdynload . h> 1137

5 e x t e r n "C" f 1138

6 SEXP pmvtCR (SEXP Rupper , SEXP Rcorr , SEXP Rdf , 1139

7 SEXP Rpmvt , SEXP Renv , SEXP Rres) f 1140

8 SEXP R f c a l l ; 1141

9 i f (! i s F u n c t i o n (Rpmvt) & (Rpmvt != R Ni lVa lu e)) 1142

10 e r r o r ("Rpmvt must be a f u n c t i o n") ; 1143

11 i f (! i s E n v i r o n m e n t (Renv)) 1144

12 e r r o r ("Renv must be an e n v i r o n m e n t") ; 1145

13 PROTECT (R f c a l l = l a n g 4 (Rpmvt , Rupper , Rcor r , Rdf)) ; 1146

14 REAL(Rres) [0] = REAL(e v a l (R f c a l l , Renv)) [0] ; 1147

15 UNPROTECT (1) ; 1148

16 r e t u r n (Rres) ; 1149

17 g 1150

18 g 1151
1152

To compile this file, use the following instructions: 1153

g++ -c pmvt.cpp -o pmvt.o -I"C:\Program Files\R\R-3.1.0 1154

\include" 1155

g++ -shared -o pmvt.dll pmvt.o ˆ 1156

-L"C:\Program Files\R\R-3.1.0\bin\i386" -lR 1157

UNCORRECTED
PROOF

254 8 Programming in R

Linux

Under Linux, use the instructions

g++ -m64 -I/usr/include/R -I/usr/local/include -fpic \

-c pmvt.cpp -o pmvt.o

R CMD SHLIB pmvt.cpp

or:

g++ -m64 -shared -L/usr/local/lib64 -o pmvt.so pmvt.o \

-L/usr/lib64/R/lib -lR

You can now call this function from R. First download the file 1158

http://biostatisticien.eu/springeR/pmvt.R which contains the following 1159

code: 1160

> pmvtRCR <- function(upper,corr,df) f
+ res <- 0.0
+ Rpmvt <- function(upper,corr,df) f
+ d <- length(upper)
+ pmvt(lower=rep(-Inf,d),upper=upper,delta=rep(0,d),
+ corr=matrix(corr,ncol=d),df=df)g
+ dyn.load(paste("pmvt",.Platform$dynlib.ext,sep=""))
+ res <- .Call("pmvtCR",as.double(upper), as.double(corr),
+ as.double(df),Rpmvt,new.env(),as.double(res))
+ dyn.unload(paste("pmvt",.Platform$dynlib.ext,sep=""))
+ return(res)
+ g

Then type the following instructions: 1161

> require("mvtnorm")
> corr <- diag(3)
> set.seed(1)
> source("pmvt.R")
> pmvtRCR(c(2,3,2),corr,c(1,1,1))
[1] 0.706062
> set.seed(1)
> pmvt(lower=rep(-Inf,3),upper=c(2,3,2),corr=corr,df=c(1,1,1))[1]
[1] 0.706062

Tip

If an SEXP object contains a vector (e.g., SEXP x) or a matrix (e.g.,
SEXP M), you can use the instructions R_len_t n = length(x) and
R_len_t p = nrows(M) to create integers containing the length n of vec-
tor x or the number of rows p of matrix M. The file Rinternals.h contains the
list of many similar useful functions.

UNCORRECTED
PROOF

8.6 � Debugging Functions 255

8.5.5 Calling R Code from Fortran 1162

We recommend the open-source software RFortran available at http://www. 1163

rfortran.org. 1164

8.5.6 Some Useful Functions 1165

Here are a few functions which you may find useful. The following functions are 1166

used in an MS-DOS terminal window (or in Cygwin, see p. 258): 1167

� nm: list of symbols of object files (e.g., nm random.dll). 1168

� objdump: information about object files (e.g., objdump -x random.dll). 1169

� ldd: list dynamic dependencies if necessary (e.g., ldd random.dll). 1170

The following functions are used in R: 1171

� getLoadDLLs(): list all DLLs loaded in the current session (e.g., 1172

getLoadDLLs()) 1173

� is.loaded(): checks whether a library is loaded (e.g., is.loaded 1174

(random.dll)) 1175

SECTION 8.6

� Debugging Functions
1176

In this section, we present various options which can be useful to debug a function 1177

and find an error. The error could be either in the R code or in C/C++ or Fortran 1178

code called from your R function. 1179

See also

We refer the reader to the website http://www.stats.uwo.ca/faculty/
murdoch/software/debuggingR.

8.6.1 Debugging Functions in Pure R 1180

We present some debugging functions, useful when writing R code. 1181

1182

The Function browser() 1183

1184

A useful debugging function in R is the function browser(). If you insert the 1185

instruction browser() in the source of your function, the program will stop at the 1186

place where it was inserted. 1187

UNCORRECTED
PROOF

256 8 Programming in R

Here is an example showing how to use browser() in a function called lsq() 1188

which calculates the least squares estimator of unknown arguments in a simple linear 1189

model (see Chap. 14 for further details). 1190

1191
1 l s q <� f u n c t i o n (X, Y, i n t e r c e p t=TRUE) f 1192

2 X <� as . m a t r i x (X) 1193

3 Y <� as . m a t r i x (Y) 1194

4 p l o t (X,Y) 1195

5 n b u n i t s <� nrow (X) 1196

6 b r o wse r () 1197

7 i f (i n t e r c e p t==TRUE) X <� c b i n d (r e p (1 , n b u n i t s) ,X) 1198

8 b e t a h a t <� s o l v e (t (X)%�%X)%�%t (X)%�%Y 1199

9 c u r v e (b e t a h a t [1]+ b e t a h a t [2]�x , add=TRUE) 1200

10 1201

11 r e t u r n (b e t a h a t) 1202

12 g 1203
1204

Source the file containing the previous code (e.g., with the instruction 1205

source(file.choose())) , then type: 1206

lsq(X=cars[,2],Y=cars[,1])

As you can see, the program stops and you can examine the contents of all local 1207

variables defined before browser(). For example, type nbunits. 1208

1209

Note

By typing the letter n (for next), you can inspect the code and the contents
of variables sequentially. To leave the inspection mode, type Q.

Here is an overview of a debugging session: 1210

lsq(X=cars[,2],Y=cars[,1])
Called from: mc(X = cars[, 2], Y = cars[, 1])
Browse[1]>nbunits
[1] 50
Browse[1]> betahat
Error: Object "betahat" not found
Browse[1]> n
debug: if (intercept == T) X <- cbind(rep(1, nbunits), X)
Browse[1]> n
debug: betahat <- solve(t(X) %*% X) %*% t(X) %*% Y
Browse[1]> n
debug: curve(betahat[1] + betahat[2] * x, add = T)
Browse[1]> betahat

[,1]
[1,] 8.2839056
[2,] 0.1655676
Browse[1]> Q
>

UNCORRECTED
PROOF

8.6 � Debugging Functions 257

Note

If you enter the letter c (for continue), the code is executed until the end,
unless a browser() command is met again.

The Function debug() 1211

1212

Another interesting function is debug() which is equivalent to putting the in- 1213

struction browser() at the top of a function. Thus debug(var) marks the func- 1214

tions var as debuggable. Any subsequent call of this function will launch the online 1215

debugger. 1216

debug(var)
var(1:3)

To get rid of this mark, use the function undebug(). 1217

undebug(var)

8.6.2 Error in R Code 1218

First change line 6 of file combn.R, replacing the affectation arrow <- by the symbol 1219

<. We now have an error: an omitted symbol (the symbol -): 1220

combmat<matrix(out$res,nrow=m,byrow=F) 1221

Save the file, source it and type the following instruction: 1222

> combnRC(5,3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0

As you can see, there is an error in the result, and the error that we introduced 1223

deliberately in the code could be difficult to detect if it were an accidental omission. 1224

Here is how we could try to detect where the error comes from. First install and load 1225

the package debug. Then use the function mtrace() of this package, as follows: 1226

mtrace(combnRC) 1227

combnRC(5,3) 1228

You should then see a debugging window with the source code of function 1229

combnRC(). Pressing the RETURN key repeatedly will evaluate your source code 1230

line by line until the next display (which occurs upon evaluation of the line we 1231

modified): 1232

UNCORRECTED
PROOF

258 8 Programming in R

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 1233

[1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 1234

[2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 1235

[3,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 1236

This hints that there is an issue at this point. We can then correct the error, for 1237

example, with the instruction fix(combnRC). 1238

1239

Note that the function mtrace() did not allow us to delve into the details of the 1240

following call: 1241

.C("combnC",res=as.integer(combmat),as.integer(n), 1242

as.integer(m)) 1243

8.6.3 Error in the C/C++ or Fortran Code 1244

We shall now see how to perform the same kind of debugging for parts of the code 1245

written in C/C++ or Fortran. It mostly boils down to using the compilation op- 1246

tion -g to add information on the source code in the DLL file, and then to using a 1247

specialized debugging tool. 1248

Warning

You will need a debugging tool. We recommend the free software
GDB. Download version 7.4 (32 bits) from http://biostatisticien.eu/
springeR/32/gdb.exe and put it in the folder C:\Rtools\bin. This soft-
ware uses the command line and is rather austere. You may find useful to add
a graphical user interface (GUI), such as the Data Display Debugger (DDD) or
Emacs. Under Windows, another interesting avenue is the software Insight,
included in the set of tools MinGW, available from http://sourceforge.
net/projects/mingw/files/OldFiles/insight.exe/download. How-
ever, this software seems to be becoming obsolescent. If you try to use it,
remember to change the system environment variable Path to add the path
to Insight (probably C:\insight\bin), as explained p. 231.
Under Microsoft Windows, you will have to install the version of Emacs avail-
able at http://vgoulet.act.ulaval.ca/en/emacs/windows. It is a bit
more complicated to use DDD under Windows. You need to launch the Cygwin

UNCORRECTED
PROOF

8.6 � Debugging Functions 259

setup (available at http://cygwin.com/install.html), choose the in-
stallation directory C:\Rtools\bin and select the software Devel: ddd
and Math: gnuplot (and accept the required dependencies). Also note
that if the list of download sites is empty, you can try the URL http://
cygwin.mirrorcatalogs.com. To use DDD, you also need an imple-
mentation of the Linux X window system for Microsoft Windows. The
software Xming, available at http://biostatisticien.eu/springeR/
Xming-6-9-0-31-setup.exe, is a good choice. You could also use
MobaXterm (http://mobaxterm.mobatek.net), or Cygwin’s Xorg server
(select X11: xorg-server: X.Org servers on installation).

8.6.4 Debugging with GDB 1249

Start an MS-DOS command window from the Windows Start menu (type cmd) in 1250

which you type 1251

cd path to folder containing inv.cpp 1252

g++ -IC:\newmat -o inv.o -c inv.cpp -g 1253

g++ -shared -o inv.dll inv.o -IC:\newmat C:/newmat/newmat.a 1254

This will create the file inv.dll with debugging information (see p. 247 for the 1255

creation of the library newmat). 1256

Tip

In order to also debug the functions from library newmat, you need to first
create this library in a way that includes debugging information:

cd n
cd newmat

g++ -c *.cpp -Wno-deprecated -g
ar cr newmatdebug.a *.o
ranlib newmatdebug.a

cp newmatdebug.a newmatdebug.dll

Then type: 1257

gdb Rgui 1258

(gdb) run 1259

This should start R, where you type 1260

> setwd("path to file inv.dll")
> dyn.load("inv.dll")

UNCORRECTED
PROOF

260 8 Programming in R

Then go to menu Misc/Break to debugger, which will allow you to return to 1261

GDB (black window), where you can type 1262

(gdb) info share 1263

(gdb) break inv.cpp:1 1264

(gdb) signal 0 1265

The first instruction (info share) shows that the library inv.dll has been loaded; 1266

the second instruction (break inv.cpp:1) allows you to add a break point on the 1267

first (executable) line of the file inv.cpp; the last instruction (signal 0) exits GDB 1268

and returns to R. In R, type: 1269

> A <- matrix(rnorm(4),nrow=2)
> source("inv.R") # File created page 247.
> inv(A)

When the processor encounters the break point, the code execution is suspended. 1270

You can now type the following instructions in GDB. The first instruction (list) 1271

displays the next lines to execute, the second instruction (next) moves to the next 1272

line, the third instruction (print nrow[0]) displays the value of nrow[0] and the 1273

last instruction continues the code execution until the end or the next break point. 1274

(gdb) list 1275

(gdb) next 1276

(gdb) print nrow[0] 1277

(gdb) continue 1278

You are back in R and you see the output of the call inv(A). You can type the 1279

following instructions to verify that the result is the same as with function solve() 1280

and to exit R. 1281

> solve(A)
> q()

Linux

Under Linux, type in a terminal window the command

R -d gdb

instead of gdb Rgui.
Alternatively, you could use the following instructions:

export R_HOME=/usr/lib64/R

gdb /usr/lib64/R/bin/exec/R

To return to R from GDB, use the key combination CTRL+C. Note that to go from
GDB to R, after typing signal 0 (or equivalently c), you need to press RETURN.

UNCORRECTED
PROOF

8.6 � Debugging Functions 261

Tip

Note that GDB can be called with options. For example,

--directory=DIR Search for source files in DIR.

--pid=PID Attach to running process PID.

See also

The documentation of GDB, available at http://sourceware.org/gdb/
current/onlinedocs/gdb, is worth reading.

Tip

You can install/compile a package (hereafter called PKG) with debugging
information (equivalent to using the flag -g mentioned above). First create a
file called Makevars.win (Makevars under Linux) in a subfolder called .R/ in
your %HOME% directory. This file should include the following lines:

for C++ code

CXXFLAGS=-g

For this purpose, you can for example type WINDOWS+R, cmd,
ENTER, cd %HOME%, ENTER, mkdir .R, ENTER, cd .R, ENTER,
echo CXXFLAGS=-g > Makevars.win, ENTER. Next, build the
package PKG and install it (from the sources using the command
R CMD INSTALL --build --debug PKG), then use one of the debug-
ging methods presented above. Note that the file NAMESPACE of your
package PKG must include the line useDynLib("PKG") so that the DLL
(or .so) file is automatically loaded when you execute in R the instruction
require("PKG"). If this procedure fails, you can always use the function
dyn.load() to load the package “by hand” from where it is installed.

Tip

It is also possible to display the contents of an object of type SEXP (call
this object s). To do this, you can include in your C/C++ code the instruction
PrintValue(s);. This way, when the instruction is encountered during code
execution, the contents of the object s will be displayed in the R console. An-
other solution is to use the instruction p Rf_PrintValue(s) from the GDB
console. Note that in this case, the display of object s in the R console may be
delayed until R takes over from GDB.

UNCORRECTED
PROOF

262 8 Programming in R

8.6.4.1 Debugging with Emacs 1282

We have seen how to debug code with GDB. We shall now show how to perform the 1283

same kind of operations with the combination of Emacs (and its excellent module 1284

ESS, Emacs Speaks Statistics) and GDB. Note that you need to have installed GDB as 1285

explained in Sect. 8.6.3. Note also that you need to create, from an MS-Doswindow, 1286

the file combn.dll with debugging information (flag -g), thanks to the following 1287

instructions: 1288

g++ -g -c combn.cpp -o combn.o 1289

g++ -shared -o combn.dll combn.o 1290

Note

Under Emacs, the notation M-x means you must press simultaneously the
keys ALT and X, whereas C-x means you must press simultaneously the keys
CTRL and X, and [RET] designates the carriage return (key RETURN).

First open Emacs (see p. 258 for how to install this software) then execute 1291

the following commands. For example, the first line is executed by pressing si- 1292

multaneously on ALT and X, then R (which will display M-x R at the bottom of 1293

Emacs), then RETURN (which will display ESS [S(R): R (newest)] starting 1294

data directory?�/), then RETURN again (which will start R in Emacs). 1295

M-x R [RET] [RET] 1296

M-x gdb [RET] gdb -i=mi --annotate=3 [RET] 1297

Your Emacs window should then be split in two, with R on top and GDB at the 1298

bottom. If that is not the case, go to the menu File/Split Window or File/New 1299

Window Below (C-x 2), then to the menu Buffer to select *R* *. 1300

Warning

The system environment variable Path must include the entry
C:\Rtools\bin first, so that the version of GDB used is 7.4.

You then need the process ID of R. Under Windows, use the key combination 1301

CTRL+ALT+Del to start the task manager. Then select the Processes tab. In the menu 1302

View/Select Columns..., tick the box PID (Process Identifier), which 1303

will add a column PID to the task manager. Then find the (PID) corresponding to 1304

the name Rterm.exe *32 (e.g., 5404). An easier option is to type Sys.getpid() 1305

in the upper R windows of Emacs. 1306

Linux

Under Linux, you can get the PID of R directly by typing in Emacs:

M-! Shell command: pgrep R [RET]

UNCORRECTED
PROOF

8.6 � Debugging Functions 263

Then type in Emacs the following instructions: 1307

(gdb) attach 5404 [RET] 1308

(gdb) signal 0 [RET] 1309

Click on the panel (or Buffer in Emacs) called *R*, and execute the following in- 1310

structions: 1311

> setwd("path to combn.R file")
> source("combn.R")
> dyn.load(paste("combn",.Platform$dynlib.ext,sep=""))

Click on the bottom sub-window (Buffer *gud*). 1312

C-c C-c 1313

(gdb) b combn.cpp:1 [RET] 1314

(gdb) c [RET] 1315

Click on the top sub-window (Buffer *R*). 1316

> combnRC(5,3)

C-g 1317

M-x gdb-many-windows 1318

Put the Emacs window in full screen. Your Emacs window should now be divided 1319

in six panels, as shown in Fig. 8.2. If needed, click on the relevant entries of the 1320

Buffermenu. 1321

Fig. 8.2: Emacs and GDB

Click on the bottom right panel called *breakpoints of*. Select the menu 1322

Buffers/*R* *. 1323

Now click on the window combn.cpp. You will see new icons in the top part of 1324

Emacs. For example, you can click on the symbol for Next Line (right of GO) to 1325

execute your C/C++ line by line. 1326

UNCORRECTED
PROOF

264 8 Programming in R

1327

Do it yourself Ï
1328

� Change line 32 of file integ.cpp into limit[0] = -1;. Recompile 1329

this code and call it from R as seen above: 1330

.C("testintegral",val = 0.0)$val. Your R session should crash. 1331

Suppose you do not remember making the above change. Use the tech- 1332

niques you just learnt to find the error. 1333

� Debug the file pmvt.cpp seen in Sect. 8.5.4. Type the instruction 1334

p Rf_PrintValue(Rpmvt) from the GDB console to display (in the 1335

R console) the contents of object Rpmvt. 1336

1337
1338

8.6.4.2 Debugging with DDD 1339

You first need to launch Xming (or an equivalent tool); its icon should appear in 1340

the task bar. Then launch a Cygwin terminal window , and type the following 1341

instructions: 1342

$ export DISPLAY=localhost:0.0
$ cd path to directory containing the source and DLL files
$ ddd Rgui

You may need to wait a while before DDD starts. 1343

Linux

Under Linux, replace the last instruction with the command R -d ddd.

Next, type the following instructions in GDB (lower panel): 1344

(gdb) dir $cwd 1345

(gdb) run 1346

The first instruction tells GDB to search for source files in the current directory 1347

(which would be given by the command pwd), thus avoiding issues due to path 1348

management in Windows. The second instruction starts R (you could also tick the 1349

box: Program/Run in Execution Window, and click on Program/Run, then on 1350

Run); type in R: 1351

> dyn.load("inv.dll")

Note that the file inv.dll was created with debugging information, as mentioned page 1352

259. Now go to menu Misc/Break to debugger to return to DDD. Go to menu 1353

File/Open source... and open file inv.cpp. Also tick the entry Data Window in 1354

menu View (and possibly entry Display Local Variables in menu Data, if you 1355

UNCORRECTED
PROOF

8.6 � Debugging Functions 265

are patient!). You can then put one or several breaking points in the code to debug 1356

(by double-clicking at the beginning of the line or by right-clicking), for example, 1357

at the instruction M << values;. This has the effect of displaying a stop symbol. 1358

Then type continue (or just c) in the lower part (gdb). This returns to R, where 1359

you type 1360

> A <- matrix(rnorm(4),nrow=2)
> source("inv.R") # File created page 247.
> inv(A)

When the (first) breaking point is encountered by the processor, code execution is 1361

suspended. You can now use the graphical tool DDD to debug your code. 1362

1363

Note that it is possible to display several values of an array. For example, you 1364

can type in the lower window (gdb) the following instruction (Fig. 8.3): 1365

graph display values[0] @ 4 1366

to display the (first) four values of array values. 1367

Fig. 8.3: DDD and GDB

8.6.4.3 Debugging with Insight 1368

Insight seems to have difficulties working on some Windows versions. Nonethe- 1369

less, we present this software for those who have a compatible version of Windows, 1370

or in case a new version of Insight is shipped after the publication of this book. 1371

1372

UNCORRECTED
PROOF

266 8 Programming in R

Recompile your file using flag -g (and possibly -fPIC) which tells the C++ com- 1373

piler to add information on the source code directly in the compiled file. 1374

g++ -c combn.cpp -o combn.o -g 1375

g++ -shared -o combn.dll combn.o 1376

Then, from the MS-DOS window, execute insight Rgui.exe, then click on Run 1377

. 1378

Next type the following commands in the R console which opens: 1379

> source("combn.R")
> dyn.load(paste("combn",.Platform$dynlib.ext,sep=""))

Go to the R menu called Misc, then Break to debugger. You are now in the 1380

Insight window. 1381

1382

In Insight, select menu View - Console [CTRL+N]. This opens the com- 1383

mand window of debugger GDB. We can now add a breaking point to function 1384

combnC by typing 1385

break combnC 1386

Then type: 1387

continue 1388

which returns to R. As soon as the function combnC is called, we will return to the 1389

debugger. 1390

UNCORRECTED
PROOF

8.6 � Debugging Functions 267

1391

Now type in R: 1392

> debug(combnRC)
> combnRC(5,3)

Use instruction n (for next) to skip to the next instruction of our R code, until reach- 1393

ing the call to the function written in C++. 1394

1395

The breaking point we added is detected and we are back in Insight. 1396

UNCORRECTED
PROOF

268 8 Programming in R

1397

Next click on icon to execute line by line the C++ code and check the value of 1398

the various variables. 1399

1400

UNCORRECTED
PROOF

8.6 � Debugging Functions 269

The window Local Variables (shown by menu View -> Local Variable 1401

[CTRL+L]) displays all local variables and their contents during code execution. 1402

1403

Note that to see the contents of an R matrix or vector, you simply need to go to the 1404

GDB console and type for example: 1405

x/30dw combmat 1406

1407

UNCORRECTED
PROOF

270 8 Programming in R

You can also display graphically this table of values and select it by clicking on 1408

plot. 1409

You can now type the following instructions in the GDB console to add a breaking 1410

point at line 32 of your C++ code, then reexecute the code. When the breaking point 1411

is encountered, the code stops again and we can ask to display again the contents of 1412

array x: 1413

break 32 1414

continue 1415

x/30dw combmat 1416

1417

8.6.4.4 Detecting Memory Leaks 1418

The messages Segmentation fault (or segfault), invalid next size, 1419

std::bad_alloc (which you will certainly encounter under Linux!), incoherent 1420

results or, more radically, a complete crash of R are often indications that there is 1421

a memory issue (access to a non-reserved or non-initialized address, using freed 1422

memory, etc.) These memory leaks often occur when you have forgotten to use the 1423

instruction delete[] ptr; to delete from memory a pointer ptr introduced in a 1424

C/C++ function. This problem can sometimes be noticed in the task manager when 1425

you run a large simulation in R and realize that the R process is using more and more 1426

memory even though it should not. 1427

Linux

Under Linux, the display of memory usage by different processes is given
by the command (entered in a terminal window) watch -d free for global
usage or by top -p PID for a specific process (use ps au to find the PID of
the desired process). You can also use the graphical tool ksysguard.

UNCORRECTED
PROOF

8.6 � Debugging Functions 271

Another common mistake is to try to manipulate the nth entry in an ar- 1428

ray of size less than n (accessing undefined memory). It can then be difficult 1429

to detect the origin of the problem. The software Dr Memory (http://code. 1430

google.com/p/drmemory) and possibly the software electric-fence-win32 1431

(http://code.google.com/p/electric-fence-win32) and duma (http:// 1432

duma.sourceforge.net) can be precious tools in such situations. 1433

Linux

Under Linux, you can use the software Valgrind or Electric Fence.

We now show on an example how to use Dr. Memory which you should in- 1434

stall in the directory C:\drmemory (choose the entry Add Dr. Memory to the 1435

system PATH for all users upon installation). 1436

1437

The following piece of code includes several errors, which can be hard to find for 1438

a beginner. You can download it from http://biostatisticien.eu/springeR/ 1439

memory.cpp. 1440

1441
1 e x t e r n "C" f 1442

2 vo id te s tm emory (i n t �M, d o u b le � a) f 1443

3 d o u b le � p t r 1 , � p t r 2 ; 1444

4 i n t i ; 1445

5 p t r 1 = new d o u b le [1 0 0 0 0] ; 1446

6 p t r 2 = new d o u b le [M[0]] ; 1447

7 p t r 1 [0] = 1 . 0 ; 1448

8 f o r (i =1; i <10000; i ++) f 1449

9 p t r 1 [i] = (d o u b le) i ; 1450

10 p t r 2 [i] = p t r 1 [i � 1] � (d o u b le) i ; 1451

11 g 1452

12 d e l e t e [] p t r 2 ; 1453

13 f o r (i =0; i <10; i ++) a [i] = p t r 2 [i] ; 1454

14 r e t u r n ; 1455

15 g 1456

16 g 1457
1458

First create the associated DLL file, using the following instructions in an Ms-Dos 1459

window: 1460

cd directory containing file memory.cpp 1461

g++ -o memory.o -c memory.cpp -g 1462

g++ -shared -o memory.dll memory.o 1463

UNCORRECTED
PROOF

272 8 Programming in R

Linux

Under Linux, use the instructions:

g++ -o memory.o -c memory.cpp -g -fPIC

g++ -shared -o memory.so memory.o

Next, type drmemory.exe -- Rgui in your command window (be patient), 1464

then type the following instructions in the R console: 1465

> dyn.load("memory.dll")
> .C("testmemory",10000L,3.0)
> q()

Now look for the instances of testmemory in the file which opened up. This will 1466

indicate the lines which may contain errors. For example, this shows that there is 1467

an error at line 13. In fact, we realize that the array a is of length 1 (and initially 1468

contains only the value 3.0), whereas we are trying to write values in entries 0–9. 1469

Furthermore, the pointer ptr2 was deleted on the preceding line. 1470

1471

You can also try the following R instruction, and note in the task manager that 1472

the amount of RAM used by R increases greatly. This is because we forgot the 1473

instruction delete[] ptr1; in the C/C++ code above: 1474

> for (i in 1:10000) .C("testmemory",10000L,as.double(1:10))

Linux

The equivalent of Dr Memory under Linux is called Valgrind. To detect
where the leak comes from, you can use the instruction:

R -d ’valgrind --leak-check=full’

> dyn.load("memory.so")
> .C("testmemory",10000L,3.0)
> q()

In the output of valgrind, you then need to look for the errors and for the
corresponding line numbers in the source code of memory.cpp. The following
instructions give other error types displayed by R and detected by Valgrind:

> # Works only once!
> # Afterwards, R crashes with: "caught segfault":
> .C("testmemory",10000L,c(3.0,5.0))
> # R closes: "invalid next size":
> .C("testmemory",10000,c(3.0,5.0))
> # R closes: "std::bad_alloc":
> .C("testmemory",10ˆ12,c(3.0,5.0))
> # Works when ptr2 is no longer defined:
> .C("testmemory",10000L,as.double(1:10))

UNCORRECTED
PROOF

8.7 Parallel Computing and Computation on Graphical Cards 273

SECTION 8.7

Parallel Computing and Computation on Graphical
Cards

1475

8.7.1 Parallel Computing 1476

You can speed up your calculations by having them run on several processors at 1477

the same time; these processors can even be on different computers. There are 1478

several specialized packages for this; they are listed in the CRAN Task View: 1479

High-Performance and Parallel Computing with R, available at http:// 1480

cran.r-project.org/web/views/HighPerformanceComputing.html. 1481

1482

The easiest to use is package parallel with communication protocol PSOCK, 1483

which we briefly describe below through an example. 1484

Tip

The MPI protocol (Message Passing Interface), used by package Rmpi, is
more flexible than the PSOCK protocol, but it requires the installation of other
software (such as OpenMPI or mpich2).

See also

We refer the interested reader to the websites http://www.divms.uiowa.
edu/˜luke/R/cluster/cluster.html, http://www.sfu.ca/˜sblay/

R/snow.html and http://cran.r-project.org/web/packages/

snowfall/vignettes/snowfall.pdf.

The following R code performs numerical evaluation (by Monte Carlo simula- 1485

tion) of the empirical level of the Shapiro-Wilks normality test for a nominal level 1486

of 5 %: 1487

> myfunc <- function(M=1000) f
+ decision <- 0
+ for (i in 1:M) f
+ x <- rnorm(100)
+ if (shapiro.test(x)$p < 0.05) decision <- decision + 1
+ g
+ return(decision)
+ g

Here is the computation time needed for this code with M D 60; 000 Monte 1488

Carlo iterations: 1489

> system.time(f
+ M <- 60000

UNCORRECTED
PROOF

274 8 Programming in R

+ decision <- myfunc(M)
+ print(decision/M)
+ g)
[1] 0.04893333

user system elapsed
18.124 0.331 18.457

We now show how this code can be parallelized using the package parallel 1490

and the corresponding gain in computation time. We used six processors. 1491

Tip

To know the number of processors on your computer, type the instruction
devmgmt.msc in the menu Start/Run. Then count the number of lines in
the Processors entry. Under Linux, type top in a terminal window, then 1.
This shows the number of processors. Another option is to use the function
detectCores() of package parallel.

> require("parallel")
> system.time(f
+ nbclus <- 6
+ M <- 60000
+ cl <- makeCluster(nbclus, type = "PSOCK")
+ out <- clusterCall(cl, myfunc, round(M/nbclus))
+ stopCluster(cl)
+ decision <- 0
+ for (clus in 1:nbclus) f
+ decision <- decision + out[[clus]]
+ g
+ print(decision/(round(M/nbclus)*nbclus))
+ g)
[1] 0.0501

user system elapsed
0.019 0.033 5.522

8.7.2 Computation on Graphical Cards 1492

The processor, or CPU (central processing unit), is the computer component which 1493

handles execution of software. However, it is now also possible to perform com- 1494

putations on a GPU (graphical processing unit), or graphical card. Graphical cards 1495

allowing such operations are marketed by Nvidia, and they can include hundreds of 1496

processors working in parallel. The speed-up in computation time can be substan- 1497

tial. To use this technology, however, you must know the programming language 1498

CUDA, developed by Nvidia. A few R developers have delved into this language 1499

and have grouped a few functions in the package gputools, which is only available 1500

on Linux for now. 1501

UNCORRECTED
PROOF

8.7 Parallel Computing and Computation on Graphical Cards 275

Here is a short example of use of this package. We used an NVIDIA GeForce 1502

GTX 480 graphical card. 1503

> require("gputools")
> A <- matrix(runif(40000),nrow=200,ncol=200)
> B <- matrix(runif(40000),nrow=200,ncol=200)
> system.time(cor(A, B, method="kendall")) # Computation CPU.

user system elapsed
29.804 0.002 29.810
> system.time(gpuCor(A, B, method="kendall")) # Computation on

GPU.
user system elapsed
0.836 0.052 0.891

See also

To find out more on this topic, go to http://cran.r-project.
org/web/packages/gputools/gputools.pdf and http://developer.
nvidia.com/object/cuda_training.html.

UNCORRECTED
PROOF

276 8 Programming in R

Memorandum

function(<par1>,<par2>,...,<parN>) <body> : declare a function object
"f"(): define a block of instructions and return the last evaluated instruction
class(), "class<-"(): extract, affect the class of an object
missing(): test whether an effective argument is defined
attributes(), "attributes<-"(): extract, affect all attributes as a list
attr(), "attr<-"(): extract, affect a single attribute
expression(): create an expression object
parse(): convert text to an expression
eval(): evaluate an expression
"	"(): create a formula object
new.env(): create an environment
local(): execute code locally in an environment

1504

✎
Exercises

8.1- For each of the following command lines, indicate the class of the returned R 1505

object. What is displayed upon execution of each of these command lines? 1506

� function(name) {name} 1507

� (function(name) {name})("Ben") 1508

� (function(name) {cat(name,"\n")})("Ben") 1509

� (function(name) {invisible(name)})("Ben") 1510

8.2- Is there a difference between 1511

� name <- function(name) name and name <- function(name) 1512

{name} 1513

� name <- function(name) {name} and 1514

name <- function(name) {return(name)} 1515

� name <- function(name) {name} and 1516

(function(name) {name}) -> name 1517

8.3- Upon execution, is there a difference between name() and name("Peter") 1518

when 1519

� name <- function(name="Peter") name 1520

� name <- function(name="Peter") name2 <- name 1521

For these two declarations of the function name(), is there a difference in the 1522

type of the R object res given by res <- name("Ben")? 1523

8.4- What R object is returned upon execution of name() when 1524

name <- function(name="Peter") { 1525

name 1526

The last instruction is a comment! 1527

} 1528

UNCORRECTED
PROOF

Exercises 277

8.5- When name <- function(firstname="Peter",name="L") { 1529

paste(firstname,name)}, what R object is returned by 1530

� name(firstname="Ben") 1531

� name(fir="Ben") 1532

� name(n="D",f="R") 1533

8.6- Rewrite the following function declaration in one line, without using the com- 1534

mand separator “;”: 1535

name <- function(name) { if(missing("name")) 1536

name <- "Peter"; cat(name,"\n") } 1537

8.7- What is the output of the execution of nameS("peteR","Ben","R")when 1538

� nameS <- function(...) c(...) 1539

� nameS <- function(...) list(...) 1540

� nameS <- function(...) for(name in c(...)) print(name) 1541

� nameS <- function(...) for(name in list(...)) 1542

print(name) 1543

Same question upon execution of 1544

nameS(c("peteR","L"),c("Ben","L"),c("R","D")) 1545

8.8- When nameS <- function(names=c("Ben","R"),...) c(names,...),1546

which R objects are returned by nameS("PeteR"), nameS(name="PeteR") 1547

and nameS(names="PeteR")? Same question when 1548

nameS <- function(...,names=c("Ben","R")) c(names,...). 1549

8.9- Create a constructor function Male() generating an object of class "Male" 1550

with fields firstname and name (in an object of type list). Create 1551

the method hello.Male() which displays "Hello Mister FIRSTNAME 1552

NAME!" (do not forget the "nn" at the end of the display!) for an object with 1553

values "FIRSTNAME" and "NAME", respectively, for the fields firstname and 1554

name. When man <- Male("Ben","L"), what is produced upon execution 1555

of the following commands: hello.Male(man) and hello(man)? What 1556

code should you execute in addition for the two results to be identical? 1557

8.10- Create the analogous functions for the class "Female" (hint: do not forget to 1558

update the gender in hello.Female()). When 1559

woman <- Female("Elsa","R"), what is produced upon execution of the 1560

following commands: hello.Male(woman), hello.Female(woman) and 1561

hello(woman)? 1562

8.11- When welcome <- function(...) for(person in list(...)){ 1563

hello(person)}, what is returned by welcome(man,woman)? 1564

And when welcome <- function(...) for(person in c(...)){ 1565

hello(person)}? 1566

Same question when hello.default <- function(obj){ 1567

cat("hello",obj,"!\n")}. 1568

UNCORRECTED
PROOF

278 8 Programming in R

Ï
Worksheet

Programming Functions and Object-Oriented Programming in R 1569

Before reading the practicals of this chapter, we strongly advise you to revise 1570

those of the previous chapters (especially the one on “advanced plots”) and to reor- 1571

ganize their solutions in as many functions as necessary. 1572

1573

A- Managing a Bank Account 1574

1575

The aim of this practical is to create three minimalist functions to manage bank 1576

accounts. The accounts will be stored in data.frame objects all called accounts and 1577

stored in different .RData files. All these files will be located in the same folder. 1578

The path to this folder should be saved in the R variable .folder.accounts and 1579

be accessible in all the functions you develop. 1580

8.1- The instruction file.path(.folder.accounts,paste(name,".RData", 1581

sep="")) gives the path of the file associated with the account Name. Create 1582

the functions path.account(), which takes one formal argument name 1583

(representing the name of the account) and returns the complete path to the 1584

file (which contains the object account of class data.frame) with extension 1585

.RData. 1586

8.2- Given that factor(levels=c("Debit","Credit")), numeric(0) and 1587

character(0), respectively, give empty vectors of explicit types, which 1588

expression would generate an empty data matrix with the predefined fields 1589

amount, mode, date and remark? Create the function account() (not to 1590

be confused with the variable account called in its body) which takes one 1591

argument name and creates a new account. 1592

8.3- Create the functions debit() and credit() to, respectively, debit and credit 1593

an amount amount (second argument) from the account name (first argu- 1594

ment). The third argument is any comment to put as remark. A fourth ar- 1595

gument can represent the date; the default value is 1596

format(Sys.time(),"\%d/\%m/\%Y") (i.e. the date of input). Remem- 1597

ber to use the functions load() and save() to load and save the variable 1598

account in the body of each function. 1599

8.4- If account is the data matrix containing information on the account, what 1600

is returned by sum(account[account$mode=="Credit","amount"])? 1601

Modify the function account() so that it returns the current state of the 1602

account only when the file returned by path.account(name) exists (use 1603

the function file.exists() to test whether a file exists). 1604

8.5- Complete account management by creating any additional functions you 1605

wish. 1606

8.6- Optional question: Since most use of R is done with objects, adapt the pre- 1607

vious functions in a way that respects the R object-oriented philosophy. You 1608

can use the next practicals for inspiration. 1609

UNCORRECTED
PROOF

Worksheet 279

B- Organizing Graphical Objects 1610

1611

When you think about it, plots in R do not really respect the object-oriented 1612

spirit: unlike most other entities, an R plot is not considered as an object which 1613

can be saved (and possibly modified) and on which certain methods can be applied. 1614

We shall attempt to propose a very basic prototype to draw a plot with circles and 1615

rectangles (and hence squares). You can enrich this library with graphical objects as 1616

you wish. Our aim is to maintain a list of graphical objects, with the possibility of 1617

changing any of its elements at any time. 1618

8.1- R functions plot.new() and plot.window() are used to initialize a plot. 1619

The argument asp set to 1 creates plots with correct units for the x and y 1620

axes. Propose an object Windowwhich gives the user the option of saving the 1621

dimensions of the graphics display window. The user can then call the con- 1622

structor function (or method) Window() (which could have the same name as 1623

the class), which takes as arguments x and y (the coordinates of the centre), 1624

width, height (dimensions along the x and y axes, respectively) and option- 1625

ally log (logarithmic transformation). All these quantities should be stored 1626

in an object list, returned by the constructor function Window(), after 1627

affecting its class to "Window". 1628

8.2- Similarly, propose constructor functions for objects of classes Circle and 1629

Rectangle. The fields x and y represent the coordinates of the centre of 1630

the object, radius is the radius of a circle and width and height are the 1631

dimensions of a rectangle. 1632

8.3- Propose plotting methods plot.Window(), plot.Rectangle() and 1633

plot.Circle(). You can find inspiration in the following R treatments used 1634

to display a new plot with a circle and a square centred at the origin and of 1635

diameter and side length set to 1: 1636

plot.new() 1637

plot.window(xlim=c(-1,1),ylim=c(-1,1),asp=1) 1638

rect(-.5,-.5,.5,.5) 1639

symbols(0,0,circle=.5,inches=FALSE,add=TRUE) 1640

8.4- Test the code you have developed by executing the code: 1641

mywindow <- Window(0,0,2,2) 1642

mycircle <- Circle(0,0,.5) 1643

myrectangle <- Rectangle(0,0,1,1) 1644

plot(mywindow);plot(mycircle);plot(myrectangle) 1645

If all goes well, you should see a graphics window with a circle inside a 1646

square. 1647

8.5- We now need to develop the methods associated with the class MyPlotwhich 1648

will contain the list of all graphical objects. First, propose a constructor 1649

function MyPlot() which initializes an object as list(objects=list()) 1650

(where objects is the field containing the list of graphical objects), affects 1651

the class "MyPlot" and returns the object. 1652

UNCORRECTED
PROOF

280 8 Programming in R

8.6- Propose a method add.MyPlot() which adds graphical objects. Remember 1653

to give a generic function add() to launch all associated methods. Use the 1654

functionalities of the list of supplementary arguments ... and the function 1655

c() so that the method add.MyPlot() can initialize as many graphical ob- 1656

jects as the user wishes. Propose a method plot.MyPlot() which executes 1657

the methods plot() for all graphical objects. The user can then enter the 1658

following lines to get the same result as earlier: 1659

myplot <- MyPlot() 1660

myplot <- add(myplot,Window(0,0,2,2),Circle(0,0,.5), 1661

Rectangle(0,0,1,1)) 1662

plot(myplot) 1663

8.7- To display a plot, you need to initialize an object of type Window and put it 1664

in first position of the list of graphical objects of the class MyPlot. It might 1665

be useful to initialize it directly inside the constructor function MyPlot(). 1666

The arguments of the function Window() can be proposed directly for the 1667

function MyPlot(). Another idea is to propose a list of graphical objects to 1668

the user upon creation of an object of class MyPlot. As we have done for the 1669

method add.MyPlot(), we could use the list of supplementary arguments 1670

..., which must be placed as first argument of the function MyPlot() so as 1671

to get the previous result with only two lines: 1672

myplot <- MyPlot(Circle(),Rectangle()) 1673

plot(myplot) 1674

However, note that in the first line, it is assumed that the default values of 1675

the arguments of the function Window(), Circle() and Rectangle() are 1676

appropriate. 1677

8.8- The project is launched with this first prototype. You can complete it as you 1678

wish. If you need inspiration, you could try managing the list of graphical 1679

objects (e.g., deleting or modifying an object), display styles, axes, etc. 1680

1681

C- Creating a Class lm2 for Linear Regression with Two Regressors 1682

1683

The aim of this practical is to reproduce the procedure used by our two friends 1684

for simple regression. Graphical display will be made possible by the excellent 1685

package rgl, which is an OpenGL interface for R. Given the technical difficulty 1686

of this chapter, we propose here to develop functions (actually methods). Given that 1687

some aspects are very technical, the aim is only to get the reader to understand all 1688

the development steps of the following functions. This practical is aimed at more 1689

advanced users. 1690

The following function returns an object of class lm2 which inherits from the 1691

standard class lm. 1692

1693
1 lm2 <� f u n c t i o n (. . .) f 1694

2 o b j <� lm (. . .) 1695

UNCORRECTED
PROOF

Worksheet 281

3 i f (n c o l (model . f rame (o b j)) != 3) 1696

4 s t o p ("two i n d e p e n d e n t v a r i a b l e s a r e r e q u i r e d !") 1697

5 c l a s s (o b j) <� c ("lm2" , c l a s s (o b j)) # o r c ("lm2" ,"lm") 1698

6 o b j 1699

7 g 1700
1701

For example, execute the following commands: 1702

> n <- 20
> x1 <- runif(n,-5,5)
> x2 <- runif(n,-50,50)
> y <- 0.3+2*x1+2*x2+rnorm(n,0,20)
> reg2 <- lm2(y�x1+x2)
> summary(reg2)
Call:
lm(formula = ..1)
Residuals:

Min 1Q Median 3Q Max
-32.0767 -17.1529 0.9872 12.3298 35.5909
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.8708 5.0769 -0.368 0.717
x1 2.8400 1.9594 1.449 0.165
x2 1.8084 0.1952 9.263 4.7e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 21.14 on 17 degrees of freedom
Multiple R-squared: 0.848, Adjusted R-squared: 0.8301
F-statistic: 47.42 on 2 and 17 DF, p-value: 1.112e-07

No surprises here: the R output of the summary is given by the method 1703

summary.lm(). 1704

The user now wishes a 3D scatter plot with the regression plane given by the 1705

standard method of least squares. 1706

1707
1 p l o t 3 d . lm2 <� f u n c t i o n (obj , r a d i u s =1 , l i n e s=TRUE, 1708

2 windowRect , . . .) f 1709

3 mat reg <� model . f rame (ob j) 1710

4 colnames (mat reg) < � c ("y" ,"x1" ,"x2") 1711

5 p r e d l i m <� cb i nd (c (r ange (mat reg [, 2]) , 1712

6 rev (range (mat reg [, 2]))) , 1713

7 rep (range (mat reg [, 3]) , c (2 , 2))) 1714

8 p r e d l i m <� cb i nd (p red l i m , app l y (p red l i m , 1 , 1715

9 f u n c t i o n (l) sum (c (1 , l)� c o e f (ob j)) 1716

10)) 1717

11 i f (m i s s i n g (windowRect)) windowRect=c (2 , 2 , 5 0 0 , 5 0 0) 1718

12 open3d (windowRect=windowRect , . . .) 1719

13 bg3d (c o l o r = "w hi t e") 1720

14 p l o t 3 d (fo rm u l a (ob j) , t y p e="n") 1721

15 s p h e r e s 3 d (fo rm ul a (ob j) , r a d i u s= r a d i u s , s p e c u l a r="green ") 1722

16 quads3d (p red l i m , c o l o r="b l u e" , a l p h a =0 . 7 , s h i n i n e s s =128) 1723

17 quads3d (p red l i m , c o l o r="cyan" , s i z e =5 , f r o n t=" l i n e s " , 1724

18 back=" l i n e s " , l i t =F) 1725

UNCORRECTED
PROOF

282 8 Programming in R

19 i f (l i n e s) f 1726

20 matpred <� cb i nd (mat reg [2 : 3] , 1727

21 model . m a t r i x (ob j)%�%c o e f (ob j)) 1728

22 p o i n t s 3 d (matpred) 1729

23 colnames (matpred) < � c ("x1" ,"x2" ,"y") 1730

24 m a t l i n e s <� r b i n d (mat reg [, c (2 : 3 , 1)] , matpred) 1731

25 nr <� nrow (mat reg) 1732

26 m a t l i n e s <� m a t l i n e s [r ep (1 : nr , r ep (2 , n r))+ c (0 , n r) ,] 1733

27 segment s3d (m a t l i n e s) 1734

28 g 1735

29 g 17361737

Here is a direct application of this method with four graphical illustrations for 1738

four different viewing angles. 1739

> require("rgl")
> plot3d(reg2)

1740

