
1Online Appendix

To use our package named ConvergenceConcepts, download it from CRAN (http://cran.r-project.org) and install

it along with the required dependencies. Then launch R and type in its console the following instructions:

require(ConvergenceConcepts)

investigate()

Now, you can investigate all the examples and exercises presented in this paper.

A Examples

A.1 Convergence in r-th mean

Example 1. We would like to investigate the convergence in r-th mean (for r = 1, 2, 3 say) of Xn towards X = 0,

where the Xn are independent random variables such that P [Xn = n0.4] = 1/n and P [Xn = 0] = 1 − 1/n. One can

show that E|Xn|r = n0.4r−1 and thus Xn
r−→ 0 for r = 1, 2 but not for r = 3. This can be observed on the following

plot (see Figure 1) where we took nmax = 2000 and M = 500.

Figure 1: ên,1 (red) and ên,2 (blue) going towards 0 ; ên,3 (green) not going towards 0.

A.2 Convergence in law

Example 2. Figure 2 shows the convergence in distribution of Xn = 1√
n

[Pn
i Zi−n√

2

]
towards N(0, 1) where the Zi are

i.i.d. χ2
1 random variables. On the left you can see an output of our law.plot2d function with the slider value fixed at

n = 70. The distribution function of a standard Gaussian is plotted in black whereas the empirical distribution function

of Xn based on M = 5000 realizations is plotted in red. We can move the slider and see that the red curve comes closer



2to the black one. Also, on the right you can see the tri-dimensional plot of |F̂n(t)− F (t)| for n = 1, . . . , nmax = 200 to

see if gets closer to the zero horizontal plane. These plots suggest a convergence in distribution.

Figure 2: Convergence in distribution in action on a simulated example. Left: the distribution function of a standard

Gaussian is plotted in black whereas the empirical distribution function of Xn (n = 70) based on M = 5000 realizations

is plotted in red. Right: tri-dimensional plot of |F̂n(t)− F (t)| as a function of n and t.

B Exercises

Exercise 1. Let X1, X2, . . . , Xn be i.i.d. N(0, 1) random variables and X = X1. Does Xn
L−→ X? Does Xn

P−→ X?

Exercise 2. Let X1, X2, . . . , Xn be independent random variables such that P [Xn =
√

n] = 1
n and P [Xn = 0] = 1− 1

n .

Does Xn
2−→ 0? Does Xn

P−→ 0?

Exercise 3. Let Z be U [0, 1] and let Xn = 2n1[0,1/n)(Z). Does Xn
r−→ 0? Does Xn

a.s.−→ 0?

Exercise 4. Let Y1, Y2, . . . , Yn be independent random variables with mean 0 and variance 1. Define X1 = X2 = 1 and

Xn =
∑n

i=1 Yi

(2n log log n)1/2
, n ≥ 3.

Does Xn
2−→ 0? Does Xn

a.s.−→ 0?

Exercise 5. Let Y1, Y2, . . . , Yn be independent random variables with uniform discrete distribution on {0, . . . , 9}. Define

Xn =
n∑

i=1

Yi

10i
.

It can be proved that Xn
a.s.−→ X =

∑∞
i=1

Yi

10i which follows a U [0, 1] distribution. Now, let Z ∼ U [0, 1] independent of

X.

Does Xn
a.s.−→ Z? Does Xn

L−→ Z?



3C Solutions to the exercises

Solution to Exercise 1.

Figure 3: Ten sample paths of Xn −X1 amid the 500 (left); p̂n (resp. ân) going towards pn 6=0 (resp. an = 1) (right).

It is trivial that Xn converges in law to X1 since for each n both Xn and X have the same distribution function.

Now, since Xn and X are independent, Xn,ω −Xω has no particular reason to be close to 0 for any n or any ω. Thus

we do not have Xn
P−→ X. It can be seen on the plot of Figure 3 that Xn,ω −Xω tends to be far from 0 and that p̂n

and ân are not going towards 0. Indeed, in this case, by noting that Xn −X ∼ N(0, 2), one can obtain explicitly

pn = 2
[
1− Φ

(
ε/
√

2
)]

' 0.9718 6= 0 (for ε = 0.05) (1)

where Φ(·) denotes the standard N(0, 1) distribution function. Thus Xn
a.s.9 X and Xn

P9 X.



4Solution to Exercise 2.

Figure 4: ên,2 not going towards 0 (left) and p̂n going towards 0 (right).

We can mentally visualize each sample path to be essentially equal to 0, but to sometimes jump higher and higher, as

n increases, with a decreasing probability. This gives us the intuition that Xn converges in probability to 0. On the

other hand, for a fixed n, the mean of the X2
n,ω values is taken away from 0 due to these few but very large values. But

for increasing values of n, one can not say if the mean of the X2
n,ω values will decrease or not. So we cannot tell more

about the quadratic mean convergence to 0.

The intuition for convergence in probability is confirmed using our package (p̂n is going to 0, see Figure 4). But we can

expect that we do not have convergence in quadratic mean towards 0 because ên,2 is not going to 0 but oscillates around 1.

Now, one can prove that Xn does not converge in a quadratic mean to 0 since en,2 = E|Xn|2 = 1,∀n and that Xn

converges to 0 in probability since pn = 1
n → 0.



5Solution to Exercise 3.

Figure 5: ên,2 not going towards 0 (left) and ân going towards 0 (right). We plotted the left graph only for the very first

n values since divergence is very fast here.

We can mentally visualize each sample path to be growing to large values then suddenly dropping to 0 and after that

staying infinitely at this null value. These sample paths can also be visualized using our package with the possibility to

use the ”zoom in” facility. This gives us the intuition that Xn converges almost surely to 0 since ∀ω, lim
n→∞

Xn,ω = 0. On

the other hand, for a fixed n, the mean of the X2
n,ω values is taken away from 0 due to the small proportion of sample

paths that take very large values. But for increasing values of n, one can not say if the mean of the X2
n,ω values will

decrease or not. So we cannot tell more using our intuition about the quadratic mean convergence to 0.

Convergence almost surely to 0 is illustrated using our package (ân is going to 0, see Figure 5). But we can expect that

we do not have convergence in quadratic mean towards 0 because ên,2 is not going to 0.

We can now prove that Xn does not converge to 0 in r-th mean since E|Xn|r = 2rn

n →∞.



6Solution to Exercise 4.

Figure 6: ên,2 going towards 0 (left) and ân equals 1 (right).

Looking at the definition of Xn, we do not get a precise information on the sample paths. So, intuition cannot be of

great help in this case. Thus, we use our package (with Yi i.i.d. N(0, 1)) to get some clue on quadratic convergence and

almost sure convergence.

Figure 6 shows that ên,2 is going towards 0 and that ân equals 1. This suggests a quadratic mean convergence, and not

an almost sure convergence.

We can now prove that Xn converges in a quadratic mean to 0 since E|Xn|2 = 1
2 log log n for all n. We added a blue

curve on the plot for the function en,2 = 1
2 log log n and we see that the blue and red curves are superposed.

To prove almost sure convergence, we have to use the law of the iterated logarithm (see Billingsley, 1995, p.154) that

can be formulated as P [Xn > 1− ε, infinitely often] = 1. This suffices to prove that Xn does not converge to 0 almost

surely.



7Solution to Exercise 5.

Figure 7: l̂n(t) going towards 0 (left) ; ân not going to 0 (right).

Since Xn and Z are independent, Xn,ω − Zω has no particular reason to be close to 0 for any n or any ω. Thus we do

not have Xn
a.s.−→ Z. It can be seen on the plot of Figure 7 that Xn,ω − Zω tends to be far from 0 and that ân is not

going towards 0. Using our package, we can also see that l̂n(t) is going towards 0 forall t. This suggests a convergence

in law of Xn towards Z. Indeed, as almost sure convergence implies convergence in law, we have Xn
L−→ X and since

X and Z are both U [0, 1], Xn
L−→ Z.

Now, lets us prove rigorously that Xn

a.s.

6→ Z. We have Xn −Z = Xn −X + X −Z
a.s.−→ X −Z (by Slutsky theorem, see

Ferguson (1996) p.42). Therefore Xn−Z
L−→ X−Z which implies that ∀ε > 0, pn = P [|Xn−Z| > ε] −→

n→∞
P [|X−Z| >

ε] = (1 − ε)2 = 0.9025 (for ε = 0.05). Thus, Xn

P

6→ Z and so Xn

a.s.

6→ Z. Note that the density function p(.) of the

difference of two U [0, 1] is given by p(z) = (1 + z)1{−1≤z≤0} + (1− z)1{0≤z≤1}.

Note that if X and Z are two independent non constant random variables with the same law, we can have Xn
a.s.−→ X

(i.e. Xn,ω → Xω almost everywhere) but Xn

a.s.

6→ Z because we may not have Xω = Zω ∀ω ∈ Ω. But, in the case where

X and Z are constant random variables with the same law, we have obviously X = Z and thus trivially Xn
a.s.−→ X

implies that Xn
a.s.−→ Z.


