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Abstract
We suggest a variation of the Hellerstein—
Koutsoupias—Papadimitriou indexability model
for datasets equipped with a similarity measure,
with the aim of better understanding the structure
of indexing schemes for similarity-based search
and the geometry of similarity workloads. This in
particular provides a unified approach to a great
variety of schemes used to index into metric spaces
and facilitates their transfer to more general simi-
larity measures such as quasi-metrics. We discuss
links between performance of indexing schemes and
high-dimensional geometry. The concepts and results
are illustrated on a very large concrete dataset of
peptide fragments equipped with a quasi-metric tree
indexing scheme.

1. Introduction

Indexing into very large datasets with the aim of
fast similarity search still remains a challenging and
largely elusive problem of data engineering. The main
motivation for the present work comes from sequence-
based biology, where high-speed access methods for
biological sequence databases will be vital both for de-
veloping large-scale datamining projects [8] and for
testing the nascent mathematical conceptual models
[5].

What is needed, is a fully developed mathemati-
cal paradigm of indexability for similarity search that
would incorporate the existing structures of database
theory and possess a predictive power. While the fun-
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damental building blocks - similarity measures, data
distributions, hierarchical tree index structures, and so
forth - are in plain view, the only way they can be as-
sembled together is by examining concrete datasets of
importance and taking one step at a time. Theoretical
developments and massive amounts of computational
work must proceed in parallel; generally, we share the
philosophy espoused in [16].

The master concept was introduced in the influential
paper [11] (cf. also [10]): aworkload, W , is a triple
consisting of a search domainΩ, a datasetX, and a set
of queries,Q. An indexing schemeaccording to [11] is
just a collection of blocks coveringX. While this con-
cept is fully adequate for many aspects of theory, we
believe that analysis of indexing schemes for similar-
ity search, with its strong geometric flavour, requires
a more structured approach, and so we put forward a
concept of an indexing scheme as a system of blocks
equipped with a tree-like search structure and decision
functions at each step. We also suggest the notion of
a reductionof one workload to another, allowing one
to create new access methods from the existing ones.
One example is the new concept of a quasi-metric tree,
proposed here. We discuss how geometry of high di-
mensions (asymptotic geometric analysis) may offer a
constructive insight into the nature of the curse of di-
mensionality.

Our concepts and results are illustrated through-
out on a concrete dataset of short peptide fragments,
containing nearly 24 million data points and equipped
with a biologically significant similarity measure. In
particular, we construct a quasi-metric tree index struc-
ture into our dataset, using on a well-known idea in
molecular biology. Even if intended as a mere illus-
tration and a building block for more sophisticated ap-
proaches, this scheme outputs 100 nearest neighbours



from the actual dataset to any one of the2010 virtual
peptide fragments through scanning on average 0.53
%, and at most 3.5%, of data.

2. Workloads

2.1. Defintion and basic examples

A workload[11] is a tripleW = (Ω,X,Q), where
Ω is the domain,X is a finite subset of the domain
(dataset, or instance), andQ ⊆ 2Ω is the set of
queries, that is, some specified subsets ofΩ. An-
swering a queryQ ∈ Q means listing all datapoints
x ∈ X ∩Q.

Example2.1. Thetrivial workload: Ω = X = {∗} is a
one-element set, with a sole possible query,Q = {∗}.

Example2.2. Let X ⊆ Ω be a dataset.Exact match
queriesfor X are singletons, that is, setsQ = {ω},
ω ∈ Ω.

Example2.3. Let Wi = (Ωi,Xi,Qi), i = 1, 2, . . . , n
be a finite collection of workloads. Theirdisjoint sum
is a workloadW = tn

i=1Wi, whose domain is the dis-
joint union Ω = Ω1 t Ω2 t . . . t Ωn, the dataset is
the disjoint unionX = X1 tX2 t . . . tXn, and the
queries are of the formQ1 t Q2 t . . . t Qn, where
Qi ∈ Qi, i = 1, 2, . . . , n.

2.2. Similarity queries

A (dis)similarity measureon a setΩ is a function
of two variabless : Ω × Ω → R, possibly subject to
additional properties. Arange similarity query centred
at x∗ ∈ Ω consists of allx ∈ Ω determined by the
inequality s(x∗, x) < K or > K, depending on the
type of similarity measure.

A similarity workloadis a workload whose queries
are generated by a similarity measure. Different simi-
larity measures,S1 andS2, on the same domainΩ can
result in the same set of queries,Q, in which case we
will call S1 andS2 equivalent.

Metrics are among the best known similarity mea-
sures. A similarity measured(x, y) ≥ 0 is called a
quasi-metricif it satisfiesd(x, y) = 0 ⇔ x = y and
the triangle inequality, but is not necessarily symmet-
ric.

2.3. Illustration: short protein fragments

The domainΩ consists of strings of lengthm = 10
from the alphabetΣ of 20 standard amino acids:Ω =
Σ10.

T S A N I V L M K R D E Q W F Y H G P C

T 0 3 4 6 5 4 5 6 6 6 7 6 6 13 8 9 10 8 8 10

S 4 0 3 5 6 6 6 6 5 6 6 5 5 14 8 9 9 6 8 10

A 5 3 0 8 5 4 5 6 6 6 8 6 6 14 8 9 10 6 8 9

N 5 3 6 0 7 7 7 7 5 5 5 5 5 15 9 9 7 6 9 12

I 6 6 5 9 0 1 2 4 8 8 9 8 8 14 6 8 11 10 10 10

V 5 6 4 9 1 0 3 4 7 8 9 7 7 14 7 8 11 9 9 10

L 6 6 5 9 2 3 0 3 7 7 10 8 7 13 6 8 11 10 10 10

M 6 5 5 8 3 3 2 0 6 6 9 7 5 12 6 8 10 9 9 10

K 6 4 5 6 7 6 6 6 0 3 7 4 4 14 9 9 9 8 8 12

R 6 5 5 6 7 7 6 6 3 0 8 5 4 14 9 9 8 8 9 12

D 6 4 6 5 7 7 8 8 6 7 0 3 5 15 9 10 9 7 8 12

E 6 4 5 6 7 6 7 7 4 5 4 0 3 14 9 9 8 8 8 13

Q 6 4 5 6 7 6 6 5 4 4 6 3 0 13 9 8 8 8 8 12

W 7 7 7 10 7 7 6 6 8 8 10 8 7 0 5 5 10 8 11 11

F 7 6 6 9 4 5 4 5 8 8 9 8 8 10 0 4 9 9 11 11

Y 7 6 6 8 5 5 5 6 7 7 9 7 6 9 3 0 6 9 10 11

H 7 5 6 5 7 7 7 7 6 5 7 5 5 13 7 5 0 8 9 12

G 7 4 4 6 8 7 8 8 7 7 7 7 7 13 9 10 10 0 9 12

P 6 5 5 8 7 6 7 7 6 7 7 6 6 15 10 10 10 8 0 12

C 6 5 4 9 5 5 5 6 8 8 9 9 8 13 8 9 11 9 10 0

Figure 1: BLOSUM62 asymmetric distances. Distances
within members of the alphabet partition used for indexing
are greyed.

The datasetX is formed by all peptide fragments
of length 10 contained in the SwissProt database [2]
of protein sequences of a variety of biological species
(the release 40.30 of 19-Oct-2002). The fragments
containing parts of low-complexity segments masked
by the SEG program [21], as well as the fragments
containing non-standard letters, were removed. The
size of the filtered set is|X| = 23, 817, 598 unique
fragments (31,380,596 total fragments).

The most commonly used scoring matrix in se-
quence comparison, BLOSUM62 [12], serves as the
similarity measure on the alphabetΣ, and is extended
over the domainΣm via S(a, b) =

∑m
i=1 S(ai, bi) (the

ungappedscore).
The formulad(a, b) = s(a, a) − s(a, b), a, b ∈

Σ, applied to the similarity measure given by BLO-
SUM62, as well as of most other matrices from the
BLOSUM family, is a quasi-metric onΣ (Figure 1).
One can now prove that the quasi-metricd̃ on the do-
main given byd̃(a, b) =

∑m
i=1 d(ai, bi) is equivalent

to the similarity measureS.

2.4. Inner and outer workloads

We call a workloadW inner if X = Ω, otherwise
W is outer.Typically, for outer workloads|X| � |Ω|.

Example2.4. Our illustrative workload is outer, with
the ratio|X|/|Ω| = 23, 817, 598/2010 ≈ 0.0000023.

Moreover, Fig. 2 shows that an overwhelming num-
ber of pointsω ∈ Ω have neighboursx ∈ X within
the distance ofε = 25, which on average indicates
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Figure 2: Growth with regard to the product measure of
ε-neighbourhoods of our illustrative datasetX in Ω = Σ10.

high biological relevance. For this reason, most of the
possible queriesQ = Bε(ω) are meaningful, and our
illustrative workload is inherently outer indeed.

The difference between inner and outer searches is
particularly significant for similarity searches.

3. Indexing schemes

3.1. Basic concepts and examples

An access methodfor a workloadW is an algorithm
that on an inputQ ∈ Q outputs all elements ofQ∩X.
Typical access methods come from indexing schemes.

For a rooted finite treeT by L(T ) we will denote
the set of leaf nodes and byI(T ) the set of inner nodes
of T . The notationt ∈ T will mean thatt is a node
of T , andCt will denote the set of all children of a
t ∈ I(T ), while the parent oft will be denotedp(t).

Definition 3.1. Let W = (Ω,X,Q) be a workload.
An indexing schemeon W is a tripleI = (T,B,F),
where

• T is a rooted finite tree, with root node∗,

• B is a collection of subsetsBt ⊆ Ω (blocks, or
bins), wheret ∈ L(T ).

• F = {Ft : t ∈ I(T )} is a collection of set-valued
decision functions,Ft : Q → 2Ct , where each
valueFt(Q) ⊆ Ct is a subset of children of the
nodet.

Definition 3.2. An indexing schemeI = (T,B,F)
for a workloadW = (Ω,X,Q) will be calledconsis-
tent if the following is an access method.

Algorithm 3.3.

on input Q do
setA0 = {∗}
for eachi = 0, 1, . . . do

if Ai 6= ∅
then for eacht ∈ Ai do

if t is not a leaf node
then Ai+1 ← Ai+1 ∪ Ft(Q)
else foreachx ∈ Bt do

if x ∈ Q
then A← A ∪ {x}

return A

The following is an obvious sufficient condition for
consistency. While it is not necessary, it is in common
use, being easy to verify.

Proposition 3.4. An indexing schemeI = (T,B,F)
for a workloadW = (Ω,X,Q) is consistent if for ev-
eryQ ∈ Q and each nodet 6= ∗, having a descendant
s with the propertyBs ∩Q 6= ∅, one hast ∈ fp(t)(Q).

In the future we will be considering consistent in-
dexing schemes only.

Example3.5. A simple linear scan of a datasetX cor-
responds to the indexing scheme whereT = {∗, ?} has
a root and a single child,B consists of a single block
B? = Ω, and the decision functionF∗ always outputs
the same value{?}.

Example3.6. Hashingcan be described in terms of the
following indexing scheme. The treeT has depth one,
with its leaves corresponding to bins, and the decision
functionf∗ on an inputQ outputs the entire family of
bins in which elements ofQ ∩X are stored.

Example3.7. If the domainΩ is linearly ordered (for
instance, assumeΩ = R) and the set of queries con-
sists of intervals[a, b], a, b ∈ Ω, then a well-known
and efficient indexing structure is constructed using a
binary tree. The nodest of T can be identified with el-
ements ofΩ chosen so that the tree is balanced. Each
decision functionFt on an input[a, b] outputs the set
of all children nodess of t satisfying

((t− a)(s − a) ≥ 0) ∧ ((t− b)(s− b) ≥ 0).

Remark 3.8. The computational complexity of the
decision functionsFt(Q), as well as the amount of
‘branching’ resulting from an application of Algo-
rithm 3.3, become major efficiency factors in case of
similarity-based search, which is why we feel they
should be brought into the picture.
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3.2. Metric trees

Let (Ω,X, ρ) be a similarity workload, whereρ is
a metric, that is, each queryQ = Bε(ω) is a ball of
radiusε > 0 around the query centreω ∈ Ω.

A metric treeis an indexing structure into(Ω,X, ρ)
where the decision functions are of the form

Ft(Bε(ω)) = {s ∈ Ct : fs(ω) ≤ ε} (1)

for suitable 1-Lipschitz functionsfs : Ω → R, one
for each nodes ∈ T . (Recall thatf : Ω → R is 1-
Lipschitz if |f(x)− f(y)| ≤ ρ(x, y) for eachx, y ∈
Ω.) We call thoseft certification functions.The set
Ft(Bε(ω)) is output by scanning all childrens of t
and accepting / rejecting them in accordance with the
above criterion.

Theorem 3.9. Let W = (Ω,X, ρ) be a metric sim-
ilarity workload. LetT be a finite rooted tree, and
let Bt, t ∈ T be a collection of subsets ofΩ (blocks),
covering X and having the property that for every
nodet, the blocks indexed with the children oft cover
Bt. Let ft : Ω → R be 1-Lipschitz functions with
the property(ω ∈ Bt) ⇒ (ft(ω) ≤ 0). Define de-
cision functionsFt as in Eq. (1). Then the triple
(T, {Bt}t∈L(T ), {Ft}t∈I(T )) is a consistent indexing
scheme forW .

If a queryQ = Bε(ω) meets a blockBt, then it is
easy to show, using triangle inequality, thatft(ω) ≤ ε
and thusFp(t)(ω) containst and the branch starting at
t has to be followed through, while the tree is being
traversed. This assures that we won’t miss any hits.

1-Lipschitz functionsft with the required property
always exist. Once the collectionBt, t ∈ T of blocks
has been chosen, put

ft(ω) = ρ(Bt, ω) := inf
x∈Bt

ρ(x, ω),

the distance from a blockBt to anω. However, such
distance functions from sets are typically computation-
ally very expensive. The art of constructing a metric
tree consists in choosing computationally inexpensive
certification functions that at the same time don’t result
in an excessive branching.

Example 3.10. The GNAT indexing scheme [4]
uses certification functions of the formft±(ω) =
± (ρ(ω, xt)−Mt), wherext is a datapoint chosen for
the nodet, Mt is the median value for the function
ω 7→ ρ(ω, xt), andt± are two children oft.

Example3.11. Thevp-treeuses certification functions
of the form ft(ω) = (1/2)(ρ(xt+ , ω) − ρ(xt− , ω)),
where againt± are two children oft andxt± are the
vantage pointsfor the nodet.

Example3.12. The M-tree [7] employs, as certifica-
tion functions, those of the form

ft(ω) = ρ(xt, τ)− sup
τ∈Bt

ρ(xt, τ),

whereBt is a block corresponding to the nodet, xt is
a datapoint chosen for each nodet, and the suprema
on the r.h.s. are precomputed and stored.

There are many other examples of metric trees, e.g.
k-d tree,gh-tree,mvp-tree, etc. [19, 20, 6]. They all
seem to fit into the concept of a general metric tree
equipped with 1-Lipschitz certification functions, first
formulated in the present exact form in [18].

Example3.13. SupposeΩ = X = {0, 1}m, the set of
all binary strings of lengthm. TheHamming distance
between two stringsx and y is the number of terms
wherex andy differ. A k-neighbourhood of any point
with respect to the Hamming distance can be output by
a combinatorial generation algorithm such as travers-
ing the binomial tree of orderm to depthk.

3.3. Quasi-metric trees

Quasi-metrics often appear as similarity measures
on datasets, and even if they are being routinely re-
placed with metrics by way of what we call aprojec-
tive reductionof a workload (Ex. 4.6), this may result
in a loss of performance (cf. Ex. 5.2). It is therefore
desirable to develop a theory of indexability for quasi-
metric spaces.

The concept of a 1-Lipschitz function is no longer
adequate. Indeed, a 1-Lipschitz functionf : Ω → R

remains such with regard to the metricd(x, y) =
max{ρ(x, y), ρ(y.x)} on Ω, and so using 1-Lipschitz
functions for indexing in effect amounts to replacing
ρ with a coarser metricd. A subtler concept becomes
necessary.

Definition 3.14. Call a functionf on a quasi-metric
space(Ω, ρ) left 1-Lipschitzif for all x, y ∈ Ω

f(x)− f(y) ≤ ρ(x, y),

andright 1-Lipschitzif f(y)− f(x) ≤ ρ(x, y).

Example3.15. Let A be a subset of a quasi-metric
space(Ω, ρ). The distance function fromA com-
puted on the left,d(x,A) = inf{ρ(x, a) : a ∈ A},
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is left 1-Lipschitz, while the functiond(A,x) is right
1-Lipschitz.

Now one can establish an analog of Theorem 3.9.

Theorem 3.16.Let W = (Ω,X, ρ) be a quasi-metric
similarity workload. LetT be a finite rooted tree, and
let Bt, t ∈ T be blocks coveringX in such a way that
for everyt ∈ T , Bt ⊆ ∪s∈C(t)Bs. Let ft : Ω → R

be left 1-Lipschitz functions such that(ω ∈ Bt) ⇒
(ft(ω) ≤ 0). Define decision functionsFt as in Eq.
(1). Then the triple(T, {Bt}t∈L(T ), {Ft}t∈I(T )) is a
consistent indexing scheme forW .

Example3.17. Many of the particular types of metric
trees generalize to a quasi-metric setting. For instance,
M-tree (Ex. 3.12) becomes a ‘QM-tree’ if the certifi-
cation functions are chosen as

ft(ω) = ρ(ω, xt)− sup
τ∈Bt

ρ(τ, xt),

whereBt andxt are as in Ex. 3.12.

3.4. Illustration: a quasi-metric tree for protein
fragments

Here is a simple but rather efficient implementation
of a quasi-metric tree on our workload of peptide frag-
ments (Subs. 2.3).

Let Σ, Ω = Σm, andd be as in Subs. 2.3. Let
γ be a partition ofΣ, that is, a finite collection of
disjoint subsets coveringΣ. Denote byT the pre-
fix tree of γm, that is, nodes ofT are strings of the
form t = A1A2 . . . Al, whereAi ∈ γ, i = 1, 2, . . . , l,
l ≤ m, and the children oft are all strings of length
l + 1 having t as its prefix. To everyt as above as-
sign acylinder subsetBt ⊆ Ω, consisting of all strings
ω ∈ Σm such thatωi ∈ Ai, i = 1, 2, . . . , l.

The certification functionft for the nodet is the
distance from the cylinderBt, computed on the left:
ft(ω) := d(ω,Bt). The value offt at any ω can
be computed efficiently using precomputed and stored
values of distances from eacha ∈ Σ to everyA ∈ γ.
The construction of a quasi-metric tree indexing into
Σm is accomplished as in Th. 3.16.

In our case, the standard amino acid alphabet is
partitioned into five groups (Figure 1) based on some
known classification approaches to aminoacids. This
partition induces a partition ofΩ = Σ10 into 510 =
9, 765, 625 bins.

SinceX contains 23,817,598 datapoints, there are
on average 2.4 points per bin. The actual distribution
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Figure 3: Distribution of bin sizes (3,455,126 empty bins
out of 9,765,625 total).
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Figure 4: Percentage of dataset points scanned to obtain
k nearest neighbours. Based on 20000 searches for each
k. Query points were sampled with respect to the product
measure based on amino acid frequencies.

of bin sizes is strongly skewed in favour of small sizes
(Fig. 3) and appears to follow the DGX distrubition
described in [3].

The performance of our indexing scheme is re-
flected in Fig. 4. Recall that an indexing scheme
for similarity search that reduces the fraction of data
scanned to below 10 % is already considered success-
ful. Our figures are many times lower.

Remark3.18. While other partitions ofΣ producing
different indexing schemes are certainly possible, ours
can be used for searches based on other BLOSUM ma-
trices with little loss of efficiency, because most amino
acid scoring matrices used in practice reflect chemi-
cal and functional properties of amino acids and hence
produce very similar collections of queries.

4. New indexing schemes from old
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4.1. Disjoint sums

Any collection of access methods for workloads
W1,W2, . . . ,Wn leads to an access method for the
disjoint sum workloadtn

i=1Wi: to answer a query
Q = tn

i=1Qi, it suffices to answer each queryQi,
i = 1, 2, . . . , n, and then merge the outputs.

In particular, if eachWi is equipped with an index-
ing scheme,Ii = (Ti,Bi,Fi), then a new indexing
scheme fortn

i=1Wi, denotedI = tn
i=1Ii, is con-

structed as follows: the treeT contains allTi’s as
branches beginning at the root node, while the families
of bins and of certification functions forI are unions
of the respective collections for allIi, i = 1, 2, . . . , n.

4.2. Inductive reduction

Let Wi = (Ωi,Xi,Qi), i = 1, 2 be two workloads.
An inductive reductionof W1 to W2 is a pair of map-
pingsi : Ω2 → Ω1, i← : Q1 → Q2, such that

• i(X2) ⊇ X1,

• for eachQ ∈ Q1, i−1(Q) ⊆ i←(Q).

Notation:W2

i

⇒ W1.
An access method forW2 leads to an access method

for W1, where a queryQ ∈ Q1 is answered as follows:

on input Q do
answer the queryi←(Q)
for eachy ∈ X2 ∩ i←(Q) do

if i(y) ∈ Q
then addx = i(y) on the listA

return A

If I2 = (T2,B2,F2) is a consistent indexing
scheme forW2, then a consistent indexing scheme
I1 = r∗(I1) for W1 is constructed by takingT1 = T2,

B
(1)
t = i(B

(2)
t ), andf

(1)
t (Q) = f

(2)
t (i←(Q)) (the up-

per indexi = 1, 2 refers to the two workloads).

Example4.1. Let Γ be a finite graph of bounded de-
gree,k. Associate to it agraph workload, WΓ, which
is an inner workload withX = VΓ, the set of vertices,
and ak-nearest neighbourquery consists in findingN
nearest neighbours of a vertex.

A linear forest is a graph that is a disjoint union
of paths. Thelinear arboricity, la(Γ), of a graphΓ is
the smallest number of linear forests whose union isΓ.
This number is, in fact, fairly small: it does not exceed
d3d/5e, whered is the degree ofΓ [1]. This concept

leads to an indexing scheme for the graph workload
WΓ, as follows.

Let Fi, i = 1, . . . , la(Γ) be linear forests. Denote

F = t
la(Γ)
i=1 Fi. let φ : F → Γ be a surjective map

preserving the adjacency relation. Every linear forest
can be ordered, and indexed into as in Ex. 3.7. At
the next step, index into the disjoint sumF as in Subs.
4.1. Finally, index intoΓ using the inductive reduc-
tion φ : F → Γ. This indexing scheme outputs nearest
neighbourhs of any vertex ofΓ in timeO(d log n), re-
quiring storage spaceO(n), wheren is the number of
vertices inΓ.

4.3. Projective reduction

Let Wi = (Ωi,Xi,Qi), i = 1, 2 be two workloads.
A projective reductionof W1 to W2 is a pair of map-
pingsr : Ω1 → Ω2, r→ : Q1 → Q2, such that

• r(X1) ⊆ X2,

• for eachQ ∈ Q1, r(Q) ⊆ r→(Q).

Notation:W1
r
⇒W2.

An access method forW2 leads to an access method
for W1, where a queryQ ∈ Q1 is answered as follows:

on input Q do
answer the queryr→(Q)
for eachy ∈ X2 ∩ r→(Q) do

for eachx ∈ r−1(y) do
if x ∈ Q
then addx on the listA

return A

Let I2 = (T2,B2,F2) be a consistent indexing
scheme forW2. The projective reductionW1

r
⇒

W2 canonically determines an indexing schemeI1 =

r∗(I2) as follows: T1 = T2, B
(1)
t = r−1(B

(2)
t ), and

f
(1)
t (Q) = f

(2)
t (i→(Q)), i = 1, 2.

Example4.2. The linear scan of a dataset is a projec-
tive reduction to the trivial workload:W⇒{∗}.

If W = (Ω,X,Q) is a workload andΩ′ is a domain,
then every mappingr : Ω → Ω′ determines thedirect
image workload,r∗(W ) = (Ω′, r(X), r(Q)), where
r(X) is the image ofX underr andr(Q) is the family
of all queriesr(Q), Q ∈ Q.

Example4.3. Let B be a finite collection ofblocks
coveringΩ. Define thediscrete workload(B,B, 2B),
and define the reduction by mapping eachw ∈ Ω to

6



the corresponding block and defining eachr̃(Q) as the
union of all blocks that meetQ. The corresponding re-
duction forms a basic building block of many indexing
schemes.

Example4.4. Let Wi, i = 1, 2 be two metric work-
loads, that is, their query sets are generated by metrics
di, i = 1, 2. In order for a mappingf : Ω1 → Ω2 with
the propertyf(X1) ⊆ X2 to determine a projective
reductionf : W1

r
⇒ W2, it is necessary and sufficient

that f be 1-Lipschitz: indeed, in this case every ball
BX

ε (x) will be mapped inside of the ballBY
ε (f(x)) in

Y .

Example4.5. Pre-filtering is an often used instance of
projective reduction. In the context of similarity work-
loads, this normally denotes a procedure whereby a
metric ρ is replaced with a coarser distanced which
is computationally cheaper. This amounts to the 1-
Lipschitz map(Ω,X, ρ)→ (Ω,X, d).

Example 4.6. The same applies to quasi-metrics.
Moreover, it is routine to have a quasi-metric,ρ, re-
placed with a metric,d, having the propertyρ(x, y) ≤
d(x, y), so that one does not miss any hits. The usual
choices ared(x, y) = max{ρ(x, y), ρ(y, x)}, or else
d(x, y) = ρ(x, y) + ρ(y, x), followed by a rescaling.

Example4.7. A frequently used tool for dimension-
ality reduction of datasets is the famous Johnson–
Lindenstrauss lemma, cf. e.g. [13]. LetΩ = R

N be an
Euclidean space of high dimension, and letX ⊂ R

N

be a dataset withn points. Ifε > 0 andp is a randomly
chosen orthogonal projection ofR

N onto a linear sub-
space of dimensionk = O(log n)/ε2, then with over-

whelming probability the mapping
(

√

N/k
)

p does

not distort distances withinX by more than the factor
of 1± ε.

The same is no longer true of the entire domainΩ =
R

N , meaning that the technique can be only applied to
indexing for similarity search of theinner workload
(X,Q), and not the outer workload(Ω,X,Q).

Example4.8. A projective reduction of a metric space
Ω to one of a smaller cardinality,Ω′, which in turn is
equipped with a hierarchical tree index structure, is at
the core of a general paradigm of indexing into metric
spaces developed in [6].

4.4. Illustration: our indexing scheme

Our indexing scheme can be also interpreted in
terms of projective reduction as in example 4.3. De-
note byγ the alphabet consisting of five groups into

which the 20 aminoacids have been partitioned. Let
q : Σ → γ be the map assigning to each amino acid
the corresponding group. This map in its turn deter-
mines the mapr = qm : Ω→ Ωγ , whereΩ = Σm and
Ωγ = γm. The direct image workload with domain
Ωγ , determined by the mapr, can be indexed into us-
ing the binomial tree as in example 3.13 to generate all
bins that can intersect the neighbourhood of the query
point. Denote this indexing scheme byI. Then the
indexing scheme intoΩ, described in Subs. 3.4, is just
r∗(I) as defined in Subs. 4.3.

5. Performance and geometry

5.1. Access overhead

Let Wi = (Ωi,Xi,Qi), i = 1, 2 be two work-

loads, and letW1
(r,r→)
⇒ W2 be a projective reduc-

tion of W1 to W2. The relative access overheadof
the reductionr is the functionβr : Q → [1,+∞),
assuming for each queryQ the value βr(Q) :=
∣

∣r−1 (r→(Q)) ∩X
∣

∣ / |Q ∩X|.

Example5.1. The values for relative access overhead
of our indexing scheme for protein fragments consid-
ered in terms of a projective reduction as in Subs. 4.4
can be easily obtained from Fig. 4.

Example5.2. The access overhead of the projective
reduction consisting in replacing a quasi-metric with a
metric (Example 4.6) can be very considerable. Fig.
5 shows the overhead in the case of our dataset of
fragments, where the quasi-metricρ is replaced with
the metricd(x, y) = max{ρ(x, y), ρ(y, x)}. In our
view, this in itself justifies the development of theory
of quasi-metric trees.

5.2. Concentration

Let nowW = (Ω,X,Q) be a similarity workload
generated by a metric,d, on the domain. Denote by
µ the normalized counting measure supported on the
instanceX, that is,

µ(A) = |A ∩X| / |X| (2)

for anA ⊆ Ω. Thisµ is a probability measure onΩ.
The triples of this kind,(Ω, ρ, µ), whereρ is a met-

ric andd is a probability measure on the metric space
(Ω, ρ), are known asmm-spaces,orprobability metric
spaces,and they form objects of study ofgeometry of
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Figure 5: Ratio between the sizes of metric and quasi-
metric balls containingk nearest neighbours with respect
to quasi-metric. Each point is based on 5,000 samples.

high dimensions, see [9, 14, 15] and many references
therein.

The central technical concept is that of theconcen-
tration functionαΩ of anmm-spaceΩ: for ε > 0,

αΩ(ε) = 1− inf

{

µ(Aε) : A ⊆ Ω, µ(A) ≥
1

2

}

,

andαΩ(0) = 1
2 . If the intrinsic dimension of a triple

(Ω, ρ, µ) is high, the concentration functionαΩ(ε)
drops off sharply near zero. Typically, the concentra-
tion function of a probability metric space of dimen-
sion of orderd satisfiesαΩ(ε) ≤ C1 exp(−C2ε

2d),
whereC1, C2 are suitable constants. This observation
is known as theconcentration phenomenon.

The concentration functionα is non-increasing, but
need not be strictly monotone. For eachx ≥ 0, denote
α≺(x) = inf{ε ≤ 0: α(ε) ≤ x}. The following is
proved using similar arguments to Lemma 4.2 in [18].

Theorem 5.3. Let Ω = (W,X, ρ) be a metric simi-
larity workload, and letI be a metric tree indexing
scheme intoΩ. Denote byα the concentration func-
tion of themm-space(W,ρ, µ), whereµ is defined as
in Eq. (2). Letn = |X| be the number of datapoints,
and let the largest bin containm of them. The number
of bins accessed to process the worst case similarity
query is at least

n

m
bα(α≺(`/n)− ε)c.

Example5.4. In order to apply such estimates to a par-
ticular workload, one needs to determine its concen-
tration function. If one equips the dataset of peptide
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Figure 6: Percentage of bins scanned to obtaink nearest
neighbours. Based on 20000 searches for eachk. The query
points were sampled with respect to the product measure
based on amino acid frequencies.

fragments with a metric as in Ex. 4.6, then it is not dif-
ficult to derive Gaussian upper estimates for the con-
centration functionαW (ε) using standard techniques
of asymptotic geometric analysis. First, one estimates
the concentration function ofΩ = Σ10 equipped with
the product measure using the martingale technique,
and then one uses the wayX sits inside ofΩ (the rate
of growth of neighbourhoods of the dataset, cf. Fig.
2). However, the bounds obtained this way are too
loose and do not lead to meaningless bounds on per-
formance. One needs to learn how to estimate the con-
centration function of a workload more precisely.

Fig. 6 shows the actual number of bins accessed
by our indexing scheme in order to retrievek nearest
neighbours for variousk. Notice that both the number
of bins and the number of points of the dataset visited
(Fig. 4) appear to follow the power law with expo-
nent approximately12 with respect to the number of
neighbours retrieved. As yet, we are unable to give a
conceptual explanation of this fact.

However, one can obtain reasonable lower bounds
on the performance of an M-tree.

Theorem 5.5. Let W be a quasi-metric (or a metric)
similarity workload, equipped with an M-tree as in Ex.
3.17. Denote by〈µ(Bε)〉 the average measure of a ball
of radius ε > 0. The worst-case number of bins ac-
cessed while processing a similarity queryQ = Bε(ω)
is at leastb〈µ(B2ε〉/〈µ(Bε〉c.

Example5.6. Fig. 7 shows (on the log-log scale) the
rate of growth of measure of ballsBε(ω) in the illustra-
tive dataset of peptide fragments for the quasi-metric.
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Figure 7:Growth of balls in the illustrative dataset.

The rate of growth in the most meaningful range of
ε for similarity search can be estimated as being be-
tween 10 and 11. (This is, essentially, the Minkowski
dimension of the dataset.) Now Th. 5.5 leads to con-
clude that the worst-case number of bin accesses for
any M-tree is at least on the order of210 ≈ 1024.

5.3. Concentration and certification functions

Let f : Ω → R be a 1-Lipschitz function. Denote
by M the median value off . It is known that

µ{ω : |f(ω)−M | > ε} ≤ 2αΩ(ε),

that is, if Ω is high-dimensional, the values off
are concentrated near one value. If one sees such
functions as random variables respecting the distance,
the concentration phenomenon says that on a high-
dimensionalΩ, the distribution off peaks out near
one value. Using suchf as certification functions in
indexing scheme leads to a massive amount of branch-
ing and the dimensionality curse [18].

Yet, there are reasons to believe that the main reason
for the curse of dimensionality is not the inherent high-
dimensinality of datasets, but a poor choice of certifi-
cation functions. Efficient indexing schemes require
usage ofdissipating functions,that is, 1-Lipschitz
functions whose spread of values is more broad, and
which are still computationally cheap. This interplay
between complexity and dissipation is, we believe, at
the very heart of the nature of dimensionality curse.

Example5.7. One reason for a relative efficiency of
our quasi-metric tree lies in the good choice of cer-
tification functions, which are less concentrated than
distances from points (Fig. 8).
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Figure 8: Distributions of distances from 40,000 random
points to a typical point (SEDRELLTEQ) inΩ and of dis-
tances to a bin (the one containing the above fragment).

6. Conclusions

Our proposed approach to indexing schemes used
in similarity search allows for a unifying look at them
and facilitates the task of transferring the existing ex-
pertise to more general similarity measures than met-
rics. In particular, we propose the concept of a quasi-
metric tree based on a new notion of left 1-Lipschitz
functions, and implement it on a very large dataset of
peptide fragments to obtain a simple yet efficient in-
dexing scheme.

We hope that our concepts and constructions will
meld with methods of geometry of high dimensions
and lead to analysis of performance of indexing
schemes for similarity search. While we have not yet
reached the stage where asymptotic geometric analysis
can give accurate predictions of performance, at least
it leads to some conceptual understanding of their be-
haviour.

We suggest using our dataset of protein fragments
as a simple benchmark for testing indexing schemes
for similarity search.
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[6] E. Chávez, G. Navarro, R. A. Baeza-Yates, and
J. L. Marroquı́n. Searching in metric spaces.
ACM Computing Surveys, 33(3):273–321, 2001.

[7] P. Ciaccia, M. Patella, and P. Zezula,A cost
model for similarity queries in metric spaces,in:
Proc. 17-th Annual ACM Symposium on Prin-
ciples of Database Systems (PODS’98), Seattle,
WA, June 1998, pp. 59–68.

[8] N. Goodman. Ome sweet ome.Genome Tech-
nology, pages 56–59, April 2002.

[9] M. Gromov. Metric Structures for Riemannian
and Non-Riemannian Spaces, volume 152 of
Progress in Mathematics. Birkhauser, 1999.

[10] J. M. Hellerstein, E. Koutsoupias, D. P. Miranker,
C. H. Papadimitriou, and V. Samoladas. On a
model of indexability and its bounds for range
queries.Journal of the ACM (JACM), 49(1):35–
55, 2002.

[11] J. M. Hellerstein, E. Koutsoupias, and C. H.
Papadimitriou. On the analysis of indexing

schemes. InProceedings of the Sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, pages 249–256, Tuc-
son, Arizona, 12–15 May 1997.

[12] S. Henikoff and J. Henikoff. Amino acid substi-
tution matrices from protein blocks.Proc. Natl.
Acad. Sci. U.S.A., 89:10915–10919, 1992.

[13] P. Indyk and R. Motwani,Approximate nearest
neighbors: towards removing the curse of dimen-
sionality,Proc. 30-th Symp. on Theory of Com-
puting, 1998, pp. 604–613.

[14] M. Ledoux. The Concentration of Measure Phe-
nomenon, volume 89 ofMathematical Surveys
and Monographs. American Mathematical So-
ciety, 2001.

[15] V.D. Milman, Topics in asymptotic geometric
analysis,GAFA 2000 (Tel Aviv, 1999), Geom.
Funct. Anal. Special Volume, Part I (2000), 792–
815.

[16] C.H. Papadimitriou,Database metatheory: ask-
ing the big queries,in: Proc. 14-th PODS, San
Jose, CA, May 1995, pp. 1-10.

[17] V. Pestov. A geometric framework for mod-
elling similarity search. InProceedings of the
10th International Conference on Database and
Expert Systems Applications (DEXA’99), pages
150–154, Florence, Italy, Sept 1999. IEEE Com-
puter Society, Los Alamitos, CA.

[18] V. Pestov. On the geometry of similarity search:
dimensionality curse and concentration of mea-
sure. Information Processing Letters, 73:47–51,
2000.

[19] J.K. Uhlmann, Satisfying general proxim-
ity/similarity queries with metric trees,Informa-
tion Processing Lett.40 (1991), 175–179.

[20] R. Weber, H.-J. Schek, and S. Blott,A quan-
titative analysis and performance study for
similarity-search methods in high-dimensional
spaces,in: Proc. of the 24st VLDB Conf., New
York, USA, Aug. 1998, pp. 194–205.

[21] J. Wootton and S. Federhen. Analysis of compo-
sitionally biased regions in sequence databases.
Methods Enzymol., 266:554–571, 1996.

10


