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Abstract damental building blocks - similarity measures, data

We suggest a variation of the Hellerstein— distributions, hierarchical tree index structures, and so
Koutsoupias—Papadimitriou  indexability model forth - are in plain view, the only way they can be as-
for datasets equipped with a similarity measure, sembled together is by examining concrete datasets of
with the aim of better understanding the structure importance and taking one step at a time. Theoretical
of indexing schemes for similarity-based search developments and massive amounts of computational
and the geometry of similarity workloads. This in work must proceed in parallel; generally, we share the
particular provides a unified approach to a great philosophy espoused ifi [16].

variety of schemes used to index into metric spaces The master concept was introduced in the influential
and facilitates their transfer to more general simi- paper [Th] (cf. also[[10]): avorkload W, is a triple
larity measures such as quasi-metrics. We discussconsisting of a search domdih a datasefX, and a set
links between performance of indexing schemes anchf queries, Q. Anindexing schemaccording to[[I1] is
high-dimensional geometry. The concepts and resultsjyst a collection of blocks covering . While this con-
are illustrated on a very large concrete dataset of cept is fully adequate for many aspects of theory, we
peptide fragments equipped with a quasi-metric tree pelieve that analysis of indexing schemes for similar-

indexing scheme. ity search, with its strong geometric flavour, requires
a more structured approach, and so we put forward a
1. Introduction concept of an indexing scheme as a system of blocks

equipped with a tree-like search structure and decision
Indexing into very large datasets with the aim of functions at each step. We also suggest the notion of
fast similarity search still remains a challenging and areductionof one workload to another, allowing one
largely elusive problem of data engineering. The mainto create new access methods from the existing ones.
motivation for the present work comes from sequence-One example is the new concept of a quasi-metric tree,
based biology, where high-speed access methods foproposed here. We discuss how geometry of high di-
biological sequence databases will be vital both for de-mensions (asymptotic geometric analysis) may offer a
veloping large-scale datamining projecfs [8] and for constructive insight into the nature of the curse of di-
testing the nascent mathematical conceptual modelgnensionality.

[Hl- Our concepts and results are illustrated through-
What is needed, is a fully developed mathemati- out on a concrete dataset of short peptide fragments,
cal paradigm of indexability for similarity search that containing nearly 24 million data points and equipped
would incorporate the existing structures of databasewith a biologically significant similarity measure. In
theory and possess a predictive power. While the fun-particular, we construct a quasi-metric tree index struc-
. ture into our dataset, using on a well-known idea in
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from the actual dataset to any one of @@ virtual

peptide fragments through scanning on average 0.53

%, and at most 3.%¢, of data.

2. Workloads

2.1. Defintion and basic examples

A workload[[LT] is a tripleW = (2, X, Q), where
Q) is thedomain, X is a finite subset of the domain
(dataset or instancg, and @ C 29 is the set of
gueries, that is, some specified subsets ©@f An-
swering a quenyy € Q means listing all datapoints
reXNQ.

Example2.1 Thetrivial workload: 2 = X = {x}isa
one-element set, with a sole possible quélry- {x}.

Example2.2 Let X C () be a datasetExact match
queriesfor X are singletons, that is, sef = {w},
w € Q.

Example2.3 LetW; = (2;,X;,Q;),i = 1,2,...,n
be a finite collection of workloads. Thailisjoint sum
is a workloadiW = LI7"_; W;, whose domain is the dis-
joint unionQ = Oy LU Qs L ... U Q,, the dataset is
the disjoint unionX = X; U X, U... U X,, and the
queries are of the form; LI Q- U ... U @Q,, Where
Qi€ Qi i=1,2,...,n.

2.2. Similarity queries

A (dis)similarity measureon a sef( is a function
of two variabless: 2 x  — R, possibly subject to
additional properties. Aange similarity query centred
at x* € () consists of allx € 2 determined by the
inequality s(z*,z) < K or > K, depending on the
type of similarity measure.

A similarity workloadis a workload whose queries
are generated by a similarity measure. Different simi-
larity measuresS; and.S,, on the same domaii can
result in the same set of querigd, in which case we
will call S; andSy equivalent

Metrics are among the best known similarity mea-
sures. A similarity measuré(xz,y) > 0 is called a
quasi-metricif it satisfiesd(z,y) = 0 & = = y and
the triangle inequality, but is not necessarily symmet-
ric.

2.3. lllustration: short protein fragments

The domairf) consists of strings of lengttv = 10
from the alphabeE of 20 standard amino acid§2 =
»1o,

TSANIVLMKRDEAOQWFYHGTPLC
T 0 3 46 5456 6 6 7 6 6138 9 10 8 8 10
S 4 0 356 6 6 6 56 6 55148 9 9 6 810
A 5 3 08 5456 6 6 8 6 6148 9106 8 9
N 6§ 36 07 7 7 755555159 9 7 6 912
! 6 6 59 0 1 2 48 8 9 8 814 6 8 111010 10
V 56 49 103 47 8 9 7 7147 8119 9 10
L 6 6 59 2 3 0 3 7 7108 7 13 6 8 1110 1010
M 6 55 8 3 3 2 06 6 9 7 5126 8 109 9 10
K 6 45 6 7 6 6 6 03 7 4 4149 9 9 8 8 12
R 6 55 6 7 7 6 6 3 08 5 4149 9 8 8 9 12
D 6 46 57 7 8 8 6 7 0 3 5159 109 7 8 12
E 6 45 6 7 6 7 7 45 40 3149 9 8 8 8 13
Q 6 456 7 6 65 4 4 6 3 0139 8 8 8 812
w 7 7 7107 7 6 6 8 8108 7 0 5 5 10 8 1111
F 7 6 6 9 45 458 8 9 8 8100 4 9 9 1111
Y 7 6 6 85 556 7 7 9 76 9 306 91011
H 7 56 57 7 7 76 5 7 55137 5 0 8 9 12
G 7 4 46 87 88 7 7 7 7 7139 1010 0 9 12
P 6 55 8 7 6 7 7 6 7 7 6 6 15101010 8 0 12
C 65 4 95556 8 8 9 9 8138 9119 10 0

Figure 1: BLOSUMG62 asymmetric distances. Distances
within members of the alphabet partition used for indexing
are greyed.

The datasefX is formed by all peptide fragments
of length 10 contained in the SwissProt databdbe [2]
of protein sequences of a variety of biological species
(the release 40.30 of 19-Oct-2002). The fragments
containing parts of low-complexity segments masked
by the SEG program[[21], as well as the fragments
containing non-standard letters, were removed. The
size of the filtered set i&X| = 23,817,598 unique
fragments (31,380,596 total fragments).

The most commonly used scoring matrix in se-
quence comparison, BLOSUM6R [12], serves as the
similarity measure on the alphabet and is extended
over the domairt™ via S(a,b) = >, S(a;, b;) (the
ungappedscore).

The formulad(a,b) = s(a,a) — s(a,b), a,b €
3., applied to the similarity measure given by BLO-
SUM62, as well as of most other matrices from the
BLOSUM family, is a quasi-metric ol (Figure[}).
One can now prove that the quasi-metfion the do-
main given byd(a,b) = S, d(a;, b;) is equivalent
to the similarity measurg.

2.4. Inner and outer workloads

We call a workloadV inner if X = €2, otherwise
W is outer. Typically, for outer workload$X | < |2].

Example2.4. Our illustrative workload is outer, with
the ratio| X |/|Q| = 23,817,598/20'° = 0.0000023.
Moreover, Fig[R shows that an overwhelming num-
ber of pointsw € € have neighbours: € X within
the distance ot = 25, which on average indicates
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setAy = {x}
for eachi = 0,1,...do
if A; £ 0
then for eacht € A; do
if ¢is not a leaf node
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Figure 2: Growth with regard to the product measure of  The following is an obvious sufficient condition for
e-neighbourhoods of our illustrative dataséin @ = $'°.  consjstency. While it is not necessary, it is in common

high biological relevance. For this reason, most of the Use, being easy to verify.

possible querie§) = B.(w) are meaningful, and our Proposition 3.4. An indexing schem& = (T, B, F)

illustrative workload is inherently outer indeed. for a workload W’ = (€2, X, Q) is consistent it for ev-
The difference between inner and outer searches isry Q € Q and each node # *, having a descendant

particularly significant for similarity searches. s with the propertyB, N Q # 0, one hag € f,;)(Q).

_ In the future we will be considering consistent in-
3. Indexing schemes dexing schemes only.

_ Example3.5. A simple linear scan of a datas&t cor-
3.1. Basic concepts and examples responds to the indexing scheme where- {x, x} has

An access methoibr a workloadiV’ is an algorithm a root and a single child3 consists of a single block
B, = , and the decision functiof) always outputs

that on an inpu) € Q outputs all elements @ N X.
Typical access methods come from indexing schemes € Same valugs}.

For a rooted finite tred” by L(T) we will denote =~ Example3.6. Hashingcan be described in terms of the
the set of leaf nodes and ByT") the set of inner nodes  following indexing scheme. The tréehas depth one,
of T. The notationt € T will mean thatt is a node  with its leaves corresponding to bins, and the decision
of T, and C; will denote the set of all children of a function f, on an input® outputs the entire family of
t € I(T'), while the parent of will be denotedp(t). bins in which elements ap N X are stored.

Example3.7. If the domain? is linearly ordered (for
instance, assum@ = R) and the set of queries con-
sists of intervalda, b], a,b € €, then a well-known
and efficient indexing structure is constructed using a
e T'is arooted finite tree, with root node binary tree. The nodesof T' can be identified with el-

_ _ ements of) chosen so that the tree is balanced. Each
* Bis a collection of subsets; C € (blocks or  gecision functionF; on an inputja, b] outputs the set

bing), wheret < L(T). of all children nodes of ¢ satisfying

o F={F,:teI(T)}is acollection of set-valued ((t—a)(s —a) > 0) A ((t—Db)(s—b) >0).
decision functions/F;: @ — 2¢, where each o a
value F;(Q) C Cy is a subset of children of the

nodet. Remark 3.8, The computational complexity of the
Definition 3.2. An indexing schem& = (T, B, F) decision functionsf;(Q), as well as the amount of

for a workloadW = (22, X, Q) will be called consis- ‘branching’ resulting from an application of Algo-
tentif the following is aﬁ aé:cess method rithm 3.3, become major efficiency factors in case of
' similarity-based search, which is why we feel they

Algorithm 3.3. should be brought into the picture.

Definition 3.1. Let W = (2, X, Q) be a workload.
An indexing schemen W is a tripleZ = (T, B, F),
where



3.2. Metric trees

Let (22, X, p) be a similarity workload, wherg is
a metric, that is, each quey = B.(w) is a ball of
radiuse > 0 around the query centte € ).

A metric treeis an indexing structure int@2, X, p)
where the decision functions are of the form

Fi (B (w)) ={s € Cy: fs(w) < €} 1)

for suitable 1-Lipschitz functiongs: 2 — R, one
for each nodes € T. (Recall thatf: Q@ — R is 1-
Lipschitzif |f(z) — f(y)| < p(x,y) for eachz,y €
Q.) We call thosef; certification functions.The set
F;(Bc(w)) is output by scanning all childres of ¢

Example3.11 Thevp-treeuses certification functions
of the form fy(w) = (1/2)(plxr. ,w) — plar_,w)),
where agairt.. are two children of andz,,_ are the
vantage pointgor the nodet.

Example3.12 The M-tree [[]] employs, as certifica-
tion functions, those of the form

ft(w) = p(fL't,T) — sup p(th)a
TED
whereB; is a block corresponding to the notler; is
a datapoint chosen for each nogeand the suprema
on the r.h.s. are precomputed and stored.

There are many other examples of metric trees, e.g.
k-d tree,gh-tree, mup-tree, etc. [I0[ 0[] 6]. They all

and accepting / rejecting them in accordance with theseem to fit into the concept of a general metric tree

above criterion.

Theorem 3.9. Let W = (Q, X, p) be a metric sim-
ilarity workload. LetT be a finite rooted tree, and
let B;,t € T be a collection of subsets 6f (blocks),
covering X and having the property that for every
nodet, the blocks indexed with the childrenofover
B;. Let f;: Q@ — R be 1-Lipschitz functions with
the property(w € B;) = (fi(w) < 0). Define de-
cision functionsF; as in Eq. [[L). Then the triple
(T, {Bt}ier(r), { Fi }rer(r)) 1S @ consistent indexing
scheme foiV/.

If a query@ = B.(w) meets a blockB;, then it is
easy to show, using triangle inequality, thfatw) < €
and thusF),,) (w) containst and the branch starting at
t has to be followed through, while the tree is being
traversed. This assures that we won't miss any hits.

1-Lipschitz functionsf; with the required property
always exist. Once the collectiaB;, ¢ € T of blocks
has been chosen, put

fi(w) = p(Bp,w) = xienét p(z,w),

the distance from a block; to anw. However, such

distance functions from sets are typically computation-

ally very expensive. The art of constructing a metric

equipped with 1-Lipschitz certification functions, first
formulated in the present exact form [n][18].

Example3.13 Suppose? = X = {0,1}™, the set of

all binary strings of lengthn. TheHamming distance
between two strings andy is the number of terms
wherez andy differ. A k-neighbourhood of any point
with respect to the Hamming distance can be output by
a combinatorial generation algorithm such as travers-
ing the binomial tree of orden to depthk.

3.3. Quasi-metric trees

Quasi-metrics often appear as similarity measures
on datasets, and even if they are being routinely re-
placed with metrics by way of what we callpsojec-
tive reductionof a workload (Ex[4]6), this may result
in a loss of performance (cf. EX. 5.2). Itis therefore
desirable to develop a theory of indexability for quasi-
metric spaces.

The concept of a 1-Lipschitz function is no longer
adequate. Indeed, a 1-Lipschitz functign Q — R
remains such with regard to the metiz,y) =
max{p(z,y), p(y.x)} onQ, and so using 1-Lipschitz
functions for indexing in effect amounts to replacing
p with a coarser metrid. A subtler concept becomes
necessary.

tree consists in choosing computationally inexpensive Definition 3.14. Call a function f on a quasi-metric
certification functions that at the same time don't result SPace(€2, p) left 1-Lipschitzf for all z,y € ©2

in an excessive branching.

Example 3.10 The GNAT indexing scheme []4]
uses certification functions of the forni, (w) =
+ (p(w, z¢) — My), wherex, is a datapoint chosen for
the nodet, M; is the median value for the function
w +— p(w, ), andty are two children of.

f(@) = fy) < pla,y),
andright 1-Lipschitzif f(y) — f(z) < p(z,y).

Example3.15 Let A be a subset of a quasi-metric
space(f2,p). The distance function fromA com-
puted on the leftd(z, A) = inf{p(z,a): a € A},



is left 1-Lipschitz, while the functiorl( A, x) is right
1-Lipschitz.

Now one can establish an analog of Theoferh 3.9.

Theorem 3.16.LetW = (Q, X, p) be a quasi-metric
similarity workload. Letl" be a finite rooted tree, and
let B;,t € T be blocks coverind( in such a way that
for everyt € T, B; C Usec)Bs. Letfi: Q@ — R
be left 1-Lipschitz functions such that € B;) =
(ft(w) < 0). Define decision functions; as in Eq.
(@. Then the triple(T', { B: }ie 1y, {Fi}ierer)) IS @
consistent indexing scheme fiaf.

Example3.17. Many of the particular types of metric
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Figure 3: Distribution of bin sizes (3,455,126 empty bins
out of 9,765,625 total).

trees generalize to a quasi-metric setting. For instance,

M-tree (Ex. [3.IR) becomes a ‘QM-tree’ if the certifi-
cation functions are chosen as

fi(w) = p(w, 2¢) — sup p(7,2),
TEB:

whereB; andz; are as in Ex[ 3.]2.

3.4. lllustration: a quasi-metric tree for protein
fragments

Here is a simple but rather efficient implementation
of a quasi-metric tree on our workload of peptide frag-
ments (Subs. 2.3).

Let 3, 2 = ¥™, andd be as in Subs. 2.3. Let

~ be a patrtition ofX:, that is, a finite collection of
disjoint subsets covering.. Denote byT" the pre-
fix tree of v™, that is, nodes of" are strings of the
formt = A1 Ay ... A;, whereAd; € v,i=1,2,...,1,
I < m, and the children of are all strings of length
[ + 1 havingt as its prefix. To every as above as-
sign acylinder subseB; C (2, consisting of all strings
w e XY™ suchthat; € 4;,i=1,2,...,1.

The certification functionf; for the nodet is the
distance from the cylindeB;, computed on the left:
fi(w) = d(w,Bt). The value off; at anyw can
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Figure 4: Percentage of dataset points scanned to obtain
k nearest neighbours. Based on 20000 searches for each
k. Query points were sampled with respect to the product
measure based on amino acid frequencies.

of bin sizes is strongly skewed in favour of small sizes
(Fig. ) and appears to follow the DGX distrubition
described in[[B].

The performance of our indexing scheme is re-
flected in Fig. [4. Recall that an indexing scheme
for similarity search that reduces the fraction of data
scanned to below 10 % is already considered success-

be computed efficiently using precomputed and StoredfuL Our figures are many times lower.

values of distances from eache 3 to everyA € ~.
The construction of a quasi-metric tree indexing into
™ is accomplished as in Th. 3]16.

Remark3.18 While other partitions of> producing
different indexing schemes are certainly possible, ours

In our case, the standard amino acid alphabet iscan be used for searches based on other BLOSUM ma-

partitioned into five groups (Figufg 1) based on some !ices with little loss of efficiency, because most amino
known classification approaches to aminoacids. This@Cid scoring matrices used in practice reflect chemi-

partition induces a partition a2 = !0 into 50 =
9,765, 625 bins.

Since X contains 23,817,598 datapoints, there are

cal and functional properties of amino acids and hence
produce very similar collections of queries.

on average 2.4 points per bin. The actual distribution 4. New indexing schemes from old



4.1. Disjoint sums leads to an indexing scheme for the graph workload
Wr, as follows.

Let F;,i = 1,...,la(T") be linear forests. Denote
= uﬁi(f)FZ let o: FF — I' be a surjective map
preserving the adjacency relation. Every linear forest
can be ordered, and indexed into as in 3.7. At

the next step, index into the disjoint sufhas in Subs.
4.1. Finally, index intol" using the inductive reduc-
tion ¢: F' — I'. This indexing scheme outputs nearest
neighbourhs of any vertex @fin time O(dlogn), re-
quiring storage spaa@(n), wheren is the number of
vertices inl".

Any collection of access methods for workloads
Wi, Ws, ..., W, leads to an access method for the
disjoint sum workload.i? ;W;: to answer a query
Q = U ,Q,, it suffices to answer each quefy;,
i=1,2,...,n,and then merge the outputs.

In particular, if eachV; is equipped with an index-
ing schemeZ;, = (1;,B;, F;), then a new indexing
scheme forL?’ , W;, denotedZ = U Z;, is con-
structed as follows: the tre® contains allT;'s as
branches beginning at the root node, while the families
of bins and of certification functions fa&f are unions
of the respective collections for all,i =1,2,...,n.

4.3. Projective reduction

4.2. Inductive reduction Let W; = (Q, X;, Q;), i = 1,2 be two workloads.

Let W; = (9, X;, Q;), i = 1,2 be two workloads. A projective reductiorof W; to W5 is a pair of map-
An inductive reductiorof W; to W5 is a pair of map- ~ Pingsr: 1 — €, v Q1 — Qy, such that
pingsi: Q9 — Q1,17 : Q1 — Qo, such that

o 7(X;) C Xy,
e i(X3) D Xy, e foreachQ € 91, 7(Q) C r~(Q).
e foreach@ € Q1,7 1(Q) Ci—(Q). Notation: W; = W,

An access method fd#/; leads to an access method

7
Notation: Wy = W1. for Wi, where a query) € Q, is answered as follows:

An access method fd#/; leads to an access method
for W1, where aquery) € Q, is answered as follows:  on input @ do

| answer the query—(Q)
on input @ do _ for eachy € X, Nr~(Q) do
answer the quenry—(Q) for eachz € r~1(y) do
for eachy € X, Ni—(Q) do if v eqQ
if i(y) € Q _ then addz on the listA
then addx = i(y) on the listA return A

return A

. _ . _ Let Z, = (T»,B2,F2) be a consistent indexing
If I, = (T3,Bs,73) is & consistent indexing  scheme forf¥,. The projective reductioriV; =
scheme forl¥;, then a consistent indexing scheme yy, canonically determines an indexing schefie=
7y = r«(Zy) for Wy is constructed by taking; = T, *(Z») as follows: Ty = T Bt(l) _ 74_1(Bt(2)) and
1 (2 1 2) /. ’ ! ’
Bt( ) _ z(Bt( ))’ andft( )(Q) - t( )(Z (Q)) (the up- ft(l)(Q) _ ft(z)(i_’(Q)), i=1,2.

per index: = 1, 2 refers to the two workloads). _ _ _
Example4.2 The linear scan of a dataset is a projec-
tive reduction to the trivial workloadiV = {x}.

If W = (Q,X, Q) isaworkload and' is a domain,
then every mapping: Q — Q' determines thelirect
nearest neighbours of a vertex. image workload;r.(W) = (€', r(X),r(Q)), where

A linear forestis a graph that is a disjoint union 7 (X) isthe image of{ underr andr(Q) is the family
of paths. Thdinear arboricity, [a(T'), of a graphl'is ~ ©f all queries (@), Q € Q.
the smallest number of linear forests whose unidnis Example4.3. Let 5 be a finite collection oblocks
This number is, in fact, fairly small: it does not exceed covering). Define thediscrete workload B, B, 25),
[3d/5], whered is the degree of [[l]. This concept and define the reduction by mapping eache ) to

Exampled4.1 Let I be a finite graph of bounded de-
gree,k. Associate to it ayraph workload Wr, which

is an inner workload withX = V-, the set of vertices,
and ak-nearest neighbouquery consists in findingvy



the corresponding block and defining ea¢ty) asthe  which the 20 aminoacids have been partitioned. Let
union of all blocks that me&p. The corresponding re- ¢: ¥ — ~ be the map assigning to each amino acid
duction forms a basic building block of many indexing the corresponding group. This map in its turn deter-
schemes. mines the map = ¢": 2 — Q,, whereQ2 = ¥ and
Example4.4. Let W;, i = 1,2 be two metric work- {3y = 7™. The direct image workload with domain
loads, that is, their query sets are generated by metric$y» determined by the map can be indexed into us-
d;,i = 1,2. In order for a mapping : Q; — Qs with ing the binomial tree as in examgle 3.13 to generate all
the propertyf(X;) C X, to determine a projective Pins that can intersect the neighbourhood of the query
reductionf: W; = Wy, it is necessary and sufficient POint. Denote this indexing scheme By Then the
that f be 1-Lipschitz: indeed, in this case every ball indexing scheme int@, described in Subs. 3.4, is just
BX(2) will be mapped inside of the baBY (f(z))in  7(Z) as defined in Subs. 4.3.

Y.

Example4.5. Pre-filtering is an often used instance of 5. Performance and geometry

projective reduction. In the context of similarity work-

loads, this normally denotes a procedure whereby a5 1. Access overhead

metric p is replaced with a coarser distangavhich

is computationally cheaper. This amounts to the 1- LetW; = (Q;,X;,9Q;), i = 1,2 be two work-

Lipschitz map(€2, X, p) — (2, X, d). loads, and let?, "%’ W, be a projective reduc-
Example 4.6. The same applies to quasi-metrics. tion of W, to W,. Therelative access overheaof
Moreover, it is routine to have a quasi-metrig,re-  the reductionr is the functiong,: Q@ — [1,+400),

placed with a metricd, having the property(z,y) <  assuming for each query) the value 3,(Q) :=
d(z,y), so that one does not miss any hits. The usual|r™ (r7(Q)) N X|/|Q N X]|.

choices arel(z,y) = max{p(x,y),p(y, )}, Or else  Eyample5.1 The values for relative access overhead
d(z,y) = p(x,y) + p(y, z), followed by arescaling. ot or indexing scheme for protein fragments consid-
Example4.7. A frequently used tool for dimension- ered in terms of a projective reduction as in Subs. 4.4
ality reduction of datasets is the famous Johnson—can be easily obtained from Fig. 4.

Lindenstrauss lemma, cf. e.§. [13]. Let= R" be an
Euclidean space of high dimension, andetc RY

be a dataset with points. Ife > 0 andp is a randomly

Example5.2 The access overhead of the projective
reduction consisting in replacing a quasi-metric with a
o . metric (Exampl 6) can be very considerable. Fig.
chosen orth ogon_al projection RfNQO nto a Imear sub- B shovv(s the F(;\fle?_;;l]elld in the cayse of our datasetgof
space _Of dlmensu?l? = O(log n)/_e , then with over- fragments, where the quasi-metyds replaced with
whelming probability the mappmg{w/N/k) p does  ihe metricd(z,y) = max{p(z,y), ply,z)}. In our
not distort distances withitX' by more than the factor  view, this in itself justifies the development of theory
of 1 +e. of quasi-metric trees.

The same is no longer true of the entire donmaia:
RY, meaning that the technique can be only applied t05.2. Concentration

indexing for similarity search of thenner workload S
(X, Q), and not the outer workloa?, X, Q). Let nowWW = (92, X, Q) be a similarity workload
generated by a metrie], on the domain. Denote by

1 the normalized counting measure supported on the
instanceX, that is,

Example4.8. A projective reduction of a metric space
Q to one of a smaller cardinality)’, which in turn is
equipped with a hierarchical tree index structure, is at
the core of a gener_al paradigm of indexing into metric WA = |AnX]|/|X| )
spaces developed if [6].

foran A C Q. Thisu is a probability measure dn.
The triples of this kind(€, p, 1), wherep is a met-
Our indexing scheme can be also interpreted inric andd is a probability measure on the metric space
terms of projective reduction as in example] 4.3. De- (£, p), are known asum-spacesor probability metric
note by~ the alphabet consisting of five groups into spacesand they form objects of study geometry of

4.4. lllustration: our indexing scheme
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Figure 5: Ratio between the sizes of metric and quasi-
metric balls containing: nearest neighbours with respect
to quasi-metric. Each point is based on 5,000 samples.

high dimensionssee [P[ 4] 35] and many references
therein.

The central technical concept is that of twncen-
tration functionagq of anmm-space: for e > 0,

1
>_7
>3

andagq(0) = 3. If the intrinsic dimension of a triple
(€, p, 1) is high, the concentration functiong(e)
drops off sharply near zero. Typically, the concentra-
tion function of a probability metric space of dimen-
sion of orderd satisfiesaq(e) < Oy exp(—Cae?d),
whereC;, Cy are suitable constants. This observation
is known as theoncentration phenomenon.

The concentration functioa is non-increasing, but
need not be strictly monotone. For eack 0, denote
a~(z) = inf{e < 0: a(e) < z}. The following is
proved using similar arguments to Lemma 4.2[ir} [18].

aa(e) = 1 inf {uum: ACQ, p()

Theorem 5.3. Let Q = (W, X, p) be a metric simi-
larity workload, and letZ be a metric tree indexing
scheme intd). Denote bya the concentration func-
tion of themm-space(W, p, 1), wherey is defined as
in Eq. (3). Letn = |X| be the number of datapoints,
and let the largest bin contaim of them. The number

of bins accessed to process the worst case similarity,

query is at least

~[a(a™(t/n) ).

Examples.4. In order to apply such estimates to a par-

ticular workload, one needs to determine its concen-
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Figure 6: Percentage of bins scanned to obtainearest
neighbours. Based on 20000 searches for éadtne query
points were sampled with respect to the product measure
based on amino acid frequencies.

fragments with a metric as in Ek. 4.6, then itis not dif-
ficult to derive Gaussian upper estimates for the con-
centration functiomyy (¢) using standard techniques
of asymptotic geometric analysis. First, one estimates
the concentration function & = !0 equipped with

the product measure using the martingale technique,
and then one uses the way sits inside of (the rate

of growth of neighbourhoods of the dataset, cf. Fig.
B). However, the bounds obtained this way are too
loose and do not lead to meaningless bounds on per-
formance. One needs to learn how to estimate the con-
centration function of a workload more precisely.

Fig. [6 shows the actual number of bins accessed
by our indexing scheme in order to retriekenearest
neighbours for varioug. Notice that both the number
of bins and the number of points of the dataset visited
(Fig. [4) appear to follow the power law with expo-
nent approximately% with respect to the number of
neighbours retrieved. As yet, we are unable to give a
conceptual explanation of this fact.

However, one can obtain reasonable lower bounds
on the performance of an M-tree.

Theorem 5.5. Let W be a quasi-metric (or a metric)
similarity workload, equipped with an M-tree as in Ex.
B.1I7. Denote byu(B.)) the average measure of a ball
of radiuse > 0. The worst-case number of bins ac-
cessed while processing a similarity quély= B (w)

is at least| (1(Bac) /(1(Be)].

Example5.6. Fig. [f shows (on the log-log scale) the
rate of growth of measure of bali% (w) in the illustra-

tration function. If one equips the dataset of peptide tive dataset of peptide fragments for the quasi-metric.



X
/
X
—o— Mean ></
9 ——  Maximum Y
- X
& % o
— x —%x-X /
4 x” s
2 x o
g ></ /
o
I
(G x/ o/
o X _ V
?
Z o X o
— O/O
o/O/
°0—
o/
- /
)
T - o
[
— I I I I I
5 10 15 20 25

DISTANCE

Figure 7:Growth of balls in the illustrative dataset.

The rate of growth in the most meaningful range of

e for similarity search can be estimated as being be-

tween 10 and 11. (This is, essentially, the Minkowski
dimension of the dataset.) Now Th.]5.5 leads to con-

clude that the worst-case number of bin accesses for

any M-tree is at least on the orderdf ~ 1024.

5.3. Concentration and certification functions

Let f: © — R be a 1-Lipschitz function. Denote
by M the median value of. It is known that

plw: [f(w) = M| > e} < 2aq(e),

that is, if Q is high-dimensional, the values of
are concentrated near one value.
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Figure 8: Distributions of distances from 40,000 random
points to a typical point (SEDRELLTEQ) if2 and of dis-
tances to a bin (the one containing the above fragment).

6. Conclusions

Our proposed approach to indexing schemes used
in similarity search allows for a unifying look at them
and facilitates the task of transferring the existing ex-
pertise to more general similarity measures than met-
rics. In particular, we propose the concept of a quasi-
metric tree based on a new notion of left 1-Lipschitz
functions, and implement it on a very large dataset of
peptide fragments to obtain a simple yet efficient in-
dexing scheme.

We hope that our concepts and constructions will
meld with methods of geometry of high dimensions

If one sees suclaind lead to analysis of performance of indexing

functions as random variables respecting the distancegchemes for similarity search. While we have not yet
the concentration phenomenon says that on a highreached the stage where asymptotic geometric analysis

dimensionalf?, the distribution off peaks out near
one value. Using sucli as certification functions in

can give accurate predictions of performance, at least
it leads to some conceptual understanding of their be-

indexing scheme leads to a massive amount of branchhaviour.

ing and the dimensionality curse [18].

We suggest using our dataset of protein fragments

Yet, there are reasons to believe that the main reasoms a simple benchmark for testing indexing schemes

for the curse of dimensionality is not the inherent high-
dimensinality of datasets, but a poor choice of certifi-
cation functions. Efficient indexing schemes require
usage ofdissipating functionsthat is, 1-Lipschitz

functions whose spread of values is more broad, and

which are still computationally cheap. This interplay
between complexity and dissipation is, we believe, at
the very heart of the nature of dimensionality curse.

for similarity search.
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